Abstract

We report on the fabrication of three-dimensional (3D) high-Q whispering gallery microcavities on a fused silica chip by femtosecond laser microfabriction, enabled by the 3D nature of femtosecond laser direct writing. The processing mainly consists of formation of freestanding microdisks by femtosecond laser direct writing and subsequent wet chemical etching. CO2 laser annealing is followed to smooth the microcavity surface. Microcavities with arbitrary tilting angle, lateral and vertical positioning are demonstrated, and the quality (Q)-factor of a typical microcavity is measured to be up to 1.07 × 106, which is currently limited by the low spatial resolution of the motion stage used during the laser patterning and can be improved with motion stages of higher resolutions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
    [CrossRef]
  2. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
    [CrossRef]
  3. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  4. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science280(5369), 1556–1564 (1998).
    [CrossRef] [PubMed]
  5. A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett.62(6), 561–563 (1993).
    [CrossRef]
  6. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3(1), 46–49 (2009).
    [CrossRef]
  7. Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process.85(1), 11–14 (2006).
    [CrossRef]
  8. E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97(21), 211108 (2010).
    [CrossRef]
  9. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001).
    [CrossRef] [PubMed]
  10. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004).
    [CrossRef] [PubMed]
  11. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett.29(17), 2007–2009 (2004).
    [CrossRef] [PubMed]
  12. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  13. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13(15), 5676–5681 (2005).
    [CrossRef] [PubMed]
  14. F. He, J. Lin, and Y. Cheng, “Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining,” Appl. Phys. B105(2), 379–384 (2011).
    [CrossRef]
  15. K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull.36(12), 1020–1027 (2011).
    [CrossRef]
  16. Y. Hanada, K. Sugioka, I. Shihira-Ishikawa, H. Kawano, A. Miyawaki, and K. Midorikawa, “3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria,” Lab Chip11(12), 2109–2115 (2011).
    [CrossRef] [PubMed]
  17. A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
    [CrossRef] [PubMed]
  18. A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express2(3), 658–664 (2011).
    [CrossRef] [PubMed]
  19. Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett.97(21), 211105 (2010).
    [CrossRef]
  20. J. F. Ku, Q. D. Chen, R. Zhang, and H. B. Sun, “Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing,” Opt. Lett.36(15), 2871–2873 (2011).
    [CrossRef] [PubMed]
  21. T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express19(12), 11451–11456 (2011).
    [CrossRef] [PubMed]
  22. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett.21(7), 453–455 (1996).
    [CrossRef] [PubMed]
  23. A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett.20(7), 654–656 (1995).
    [CrossRef] [PubMed]

2011

F. He, J. Lin, and Y. Cheng, “Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining,” Appl. Phys. B105(2), 379–384 (2011).
[CrossRef]

K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull.36(12), 1020–1027 (2011).
[CrossRef]

Y. Hanada, K. Sugioka, I. Shihira-Ishikawa, H. Kawano, A. Miyawaki, and K. Midorikawa, “3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria,” Lab Chip11(12), 2109–2115 (2011).
[CrossRef] [PubMed]

A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express2(3), 658–664 (2011).
[CrossRef] [PubMed]

T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express19(12), 11451–11456 (2011).
[CrossRef] [PubMed]

J. F. Ku, Q. D. Chen, R. Zhang, and H. B. Sun, “Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing,” Opt. Lett.36(15), 2871–2873 (2011).
[CrossRef] [PubMed]

2010

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett.97(21), 211105 (2010).
[CrossRef]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97(21), 211108 (2010).
[CrossRef]

2009

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3(1), 46–49 (2009).
[CrossRef]

2006

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process.85(1), 11–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
[CrossRef]

2005

2004

2003

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

2001

1998

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

1996

1995

1993

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett.62(6), 561–563 (1993).
[CrossRef]

1992

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Ams, M.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Arnold, S.

Bado, P.

Beck, T.

Beere, H. E.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3(1), 46–49 (2009).
[CrossRef]

Bellouard, Y.

Beltram, F.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3(1), 46–49 (2009).
[CrossRef]

Brasselet, E.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97(21), 211108 (2010).
[CrossRef]

Capasso, F.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Cerullo, G.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Chen, Q. D.

Cheng, Y.

K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull.36(12), 1020–1027 (2011).
[CrossRef]

F. He, J. Lin, and Y. Cheng, “Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining,” Appl. Phys. B105(2), 379–384 (2011).
[CrossRef]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process.85(1), 11–14 (2006).
[CrossRef]

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett.29(17), 2007–2009 (2004).
[CrossRef] [PubMed]

Cho, A. Y.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Crespi, A.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Davis, K. M.

Dongre, C.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Dugan, M.

Faist, J.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3(1), 46–49 (2009).
[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Feng, X.-B.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett.97(21), 211105 (2010).
[CrossRef]

Glass, J. L.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett.62(6), 561–563 (1993).
[CrossRef]

Gmachl, C.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Gong, Q.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett.97(21), 211105 (2010).
[CrossRef]

Gorodetsky, M. L.

Griffel, G.

Grossmann, T.

Gu, Y.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Hanada, Y.

Y. Hanada, K. Sugioka, I. Shihira-Ishikawa, H. Kawano, A. Miyawaki, and K. Midorikawa, “3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria,” Lab Chip11(12), 2109–2115 (2011).
[CrossRef] [PubMed]

Hauser, M.

He, F.

F. He, J. Lin, and Y. Cheng, “Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining,” Appl. Phys. B105(2), 379–384 (2011).
[CrossRef]

Hirao, K.

Hoekstra, H. J. W. M.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Ilchenko, V. S.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
[CrossRef]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett.21(7), 453–455 (1996).
[CrossRef] [PubMed]

Jiang, X.-F.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett.97(21), 211105 (2010).
[CrossRef]

Juodkazis, S.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97(21), 211108 (2010).
[CrossRef]

A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001).
[CrossRef] [PubMed]

Kalt, H.

Kawano, H.

Y. Hanada, K. Sugioka, I. Shihira-Ishikawa, H. Kawano, A. Miyawaki, and K. Midorikawa, “3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria,” Lab Chip11(12), 2109–2115 (2011).
[CrossRef] [PubMed]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Ku, J. F.

Levi, A. F. J.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett.62(6), 561–563 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Li, B.-B.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett.97(21), 211105 (2010).
[CrossRef]

Li, Y.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett.97(21), 211105 (2010).
[CrossRef]

Lin, J.

F. He, J. Lin, and Y. Cheng, “Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining,” Appl. Phys. B105(2), 379–384 (2011).
[CrossRef]

Liu, Z.-P.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett.97(21), 211105 (2010).
[CrossRef]

Logan, R. A.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett.62(6), 561–563 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Mahler, L.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3(1), 46–49 (2009).
[CrossRef]

Malinauskas, M.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97(21), 211108 (2010).
[CrossRef]

Mappes, T.

Marcinkevicius, A.

Marshall, G.

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
[CrossRef]

Matsuo, S.

McCall, S. L.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett.62(6), 561–563 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Midorikawa, K.

Y. Hanada, K. Sugioka, I. Shihira-Ishikawa, H. Kawano, A. Miyawaki, and K. Midorikawa, “3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria,” Lab Chip11(12), 2109–2115 (2011).
[CrossRef] [PubMed]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process.85(1), 11–14 (2006).
[CrossRef]

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett.29(17), 2007–2009 (2004).
[CrossRef] [PubMed]

Misawa, H.

Miura, K.

Miwa, M.

Miyawaki, A.

Y. Hanada, K. Sugioka, I. Shihira-Ishikawa, H. Kawano, A. Miyawaki, and K. Midorikawa, “3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria,” Lab Chip11(12), 2109–2115 (2011).
[CrossRef] [PubMed]

Narimanov, E. E.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Ngamsom, B.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Nishii, J.

Nöckel, J. U.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Osellame, R.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Pearton, S. J.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett.62(6), 561–563 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Pollnau, M.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Qin, Y.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett.97(21), 211105 (2010).
[CrossRef]

Ramponi, R.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Ritchie, D. A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3(1), 46–49 (2009).
[CrossRef]

Rohrlack, T.

Said, A.

Savchenkov, A. A.

Schaap, A.

Schleede, S.

Serpengüzel, A.

Shihira-Ishikawa, I.

Y. Hanada, K. Sugioka, I. Shihira-Ishikawa, H. Kawano, A. Miyawaki, and K. Midorikawa, “3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria,” Lab Chip11(12), 2109–2115 (2011).
[CrossRef] [PubMed]

Sivco, D. L.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Slusher, R. E.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett.62(6), 561–563 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Spence, D.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Stone, A. D.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Sugimoto, N.

Sugioka, K.

Y. Hanada, K. Sugioka, I. Shihira-Ishikawa, H. Kawano, A. Miyawaki, and K. Midorikawa, “3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria,” Lab Chip11(12), 2109–2115 (2011).
[CrossRef] [PubMed]

K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull.36(12), 1020–1027 (2011).
[CrossRef]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process.85(1), 11–14 (2006).
[CrossRef]

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett.29(17), 2007–2009 (2004).
[CrossRef] [PubMed]

Sun, H. B.

Thiel, M.

Tredicucci, A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3(1), 46–49 (2009).
[CrossRef]

Tsai, H. L.

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process.85(1), 11–14 (2006).
[CrossRef]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

van den Vlekkert, H. H.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

von Freymann, G.

Walther, C.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3(1), 46–49 (2009).
[CrossRef]

Watanabe, M.

Watts, P.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

Withford, M.

Witzigmann, B.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3(1), 46–49 (2009).
[CrossRef]

Xiao, Y.-F.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett.97(21), 211105 (2010).
[CrossRef]

Yang, H.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett.97(21), 211105 (2010).
[CrossRef]

Zhang, R.

Žukauskas, A.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97(21), 211108 (2010).
[CrossRef]

Appl. Phys. B

F. He, J. Lin, and Y. Cheng, “Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining,” Appl. Phys. B105(2), 379–384 (2011).
[CrossRef]

Appl. Phys. Lett.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett.62(6), 561–563 (1993).
[CrossRef]

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett.97(21), 211105 (2010).
[CrossRef]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97(21), 211108 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process.85(1), 11–14 (2006).
[CrossRef]

Biomed. Opt. Express

IEEE J. Sel. Top. Quantum Electron.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).
[CrossRef]

Lab Chip

Y. Hanada, K. Sugioka, I. Shihira-Ishikawa, H. Kawano, A. Miyawaki, and K. Midorikawa, “3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria,” Lab Chip11(12), 2109–2115 (2011).
[CrossRef] [PubMed]

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010).
[CrossRef] [PubMed]

MRS Bull.

K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull.36(12), 1020–1027 (2011).
[CrossRef]

Nat. Photonics

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3(1), 46–49 (2009).
[CrossRef]

Nature

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Science

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Procedures of fabrication of 3D microcavity by femtosecond laser direct writing.

Fig. 2
Fig. 2

Optical microscope images of a tilted fused silica microdisk fabricated by femtosecond laser micromachining and HF wet etching (a) before and (b) after CO2 laser annealing. Insets in (a) and (b): top view of the microcavity, (c) SEM images of the cavity, and (d) SEM image of two microtoroidal cavities with different heights after CO2 laser annealing.

Fig. 3
Fig. 3

(a) SEM image of a microtoroidal cavity parallel to the substrate whose Q factor is to be examined. (b) An optical micrograph of the microtoroidal cavity coupled with a fiber taper. (c) Transmission spectrum of the microcavity coupled with the fiber taper. The free spectral range of 13.65nm agrees well with the numerical calculation result. (d) Lorentzian fit (red solid line) of measured spectrum around the resonant wavelength at 1534.72nm (black dotted line), showing a Q factor of 1.07 × 106.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ FSR λ 0 2 /2πRn

Metrics