Abstract

In this paper the optimal lighting for oral cavity detection is proposed. The illuminants consist of several LEDs with different intensity ratios and peak wavelengths, which can enhance the color difference between normal and abnormal regions in the oral cavity. An algorithm combined with multi-spectral imaging (MSI) and color reproduction technique is applied to find the best enhancement of this difference. The colored LEDs of the optimal lighting, the Color Rendering Index (CRI) of the illuminants, and comparison with traditional illuminants are discussed. The calculations show that color enhancement ability in the oral cavity is not entirely a function of the higher CRI of some illuminants, as the narrowband illuminants (LEDs) produce an image with greater contrast than the broadband spectra and higher CRI of traditional illuminants in the reddish oral environment. Accordingly, an illuminant with specific intensity ratio of red, green, and blue LEDs is proposed, which has optimal color enhancement for oral cavity detection. Compared with the fluorescent lighting commonly in the use now, the color difference between normal and inflamed tissues can be improved from 21.5732 to 30.5532, a 42% increase, thus making medical diagnosis more efficient, so helping patients receive early treatment.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Corell, H. Ou, C. Dam-Hansen, P. M. Petersen, and D. Friis, “Light Emitting Diodes as an alternative ambient illumination source in photolithography environment,” Opt. Express 17(20), 17293–17302 (2009).
    [CrossRef] [PubMed]
  2. C. H. Tsuei, W. S. Sun, and C. C. Kuo, “Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting,” Opt. Express 18(S4Suppl 4), A640–A653 (2010).
    [CrossRef] [PubMed]
  3. M. Rahman, P. Chaturvedi, A. M. Gillenwater, and R. Richards-Kortum, “Low-cost, multimodal, portable screening system for early detection of oral cancer,” J. Biomed. Opt. 13(3), 030502 (2008).
    [CrossRef] [PubMed]
  4. CIE 17.4–1987, “International lighting vocabulary,” No.845–02–59 (1987).
  5. CIE 13.3–1995, “Method of measuring and specifying colour rendering properties of light sources,” (1995).
  6. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
    [CrossRef]
  7. W. A. Thornton, “Color-Discrimination Index,” J. Opt. Soc. Am. 62(2), 191–194 (1972).
    [CrossRef] [PubMed]
  8. K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
    [CrossRef]
  9. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
    [CrossRef]
  10. J. A. Worthey, “Color rendering: Asking the question,” Color Res. Appl. 28(6), 403–412 (2003).
    [CrossRef]
  11. H. C. Wang, Y. T. Chen, J. T. Lin, C. P. Chiang, and F. H. Cheng, “Enhanced visualization of oral cavity for early inflamed tissue detection,” Opt. Express 18(11), 11800–11809 (2010).
    [CrossRef] [PubMed]
  12. M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. C. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009).
    [CrossRef] [PubMed]
  13. M. Yamaguchi, “Medical application of a color reproduction system with a multispectral camera,” Dig. Color Imaging Biomed., 33–38 (2001)
  14. M. Anderson, R. Motta, S. Chandrasekar, and M. Stokes, “Proposal for a standard default color space for the internet: sRGB,” IS&T/SID 4th Color Imaging Conference Proc. 238 (1996), also see http://www.w3.org/Graphics/Color/sRGB.html
  15. C. J. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
    [CrossRef]
  16. P. Green and L. MacDonald, Colour Engineering: Achieving Device Independent Colour (Wiley, 2002).
  17. E. Svistun, U. Utzinger, R. Jacob, R. K. Rebecca, A. El-Naggar, and A. Gillenwater, “Optimal visual perception and detection of oral cavity neoplasia reflectance and fluorescence,” Biomedical Topical Meeting TuA3 (2002).
  18. P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt. 11(2), 024006 (2006).
    [CrossRef] [PubMed]
  19. D. Roblyer, C. Kurachi, A. El-Naggar, M. D. Williams, A. M. Gillenwater and R. Richards-Kortum, “Multispectral and hyperspectral in vivo imaging of the oral cavity for neoplastic tissue detection,” Biomedical Optics BTuD1 (2008).
  20. C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17(2), 142–144 (1992).
    [CrossRef]
  21. A. Žukauskas, R. Vaicekauskas, and M. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
    [CrossRef] [PubMed]
  22. J. von Kries, Chromatic Adaptation, (Festschrift der Albrecht-Ludwigs-Universität 1902). Translation from D.L. MacAdam, Colorimetry-Fundamentals (SPIE Milestone Series MS 77 1993).
  23. M. D. Fairchild, Color Appearance Models (John Wiley & Sons, 2005) p. 114.
  24. http://msdn.microsoft.com/zh-tw/express/aa718373 .

2010

2009

2008

M. Rahman, P. Chaturvedi, A. M. Gillenwater, and R. Richards-Kortum, “Low-cost, multimodal, portable screening system for early detection of oral cancer,” J. Biomed. Opt. 13(3), 030502 (2008).
[CrossRef] [PubMed]

2007

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

2006

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt. 11(2), 024006 (2006).
[CrossRef] [PubMed]

2005

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[CrossRef]

2003

J. A. Worthey, “Color rendering: Asking the question,” Color Res. Appl. 28(6), 403–412 (2003).
[CrossRef]

2002

C. J. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[CrossRef]

2001

M. Yamaguchi, “Medical application of a color reproduction system with a multispectral camera,” Dig. Color Imaging Biomed., 33–38 (2001)

1992

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17(2), 142–144 (1992).
[CrossRef]

1972

Bouchard, M. B.

Burgess, S. A.

Chaturvedi, P.

M. Rahman, P. Chaturvedi, A. M. Gillenwater, and R. Richards-Kortum, “Low-cost, multimodal, portable screening system for early detection of oral cancer,” J. Biomed. Opt. 13(3), 030502 (2008).
[CrossRef] [PubMed]

Chen, B. R.

Chen, Y. T.

Cheng, F. H.

Chiang, C. P.

Corell, D.

Dam-Hansen, C.

Davis, W.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Friis, D.

Gilhuly, T.

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt. 11(2), 024006 (2006).
[CrossRef] [PubMed]

Gillenwater, A. M.

M. Rahman, P. Chaturvedi, A. M. Gillenwater, and R. Richards-Kortum, “Low-cost, multimodal, portable screening system for early detection of oral cancer,” J. Biomed. Opt. 13(3), 030502 (2008).
[CrossRef] [PubMed]

Hashimoto, K.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

Hillman, E. M. C.

Hunt, R. W. G.

C. J. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[CrossRef]

Kuo, C. C.

Lane, P. M.

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt. 11(2), 024006 (2006).
[CrossRef] [PubMed]

Li, C. J.

C. J. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[CrossRef]

Lin, J. T.

Luo, M. R.

C. J. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[CrossRef]

MacAulay, C. E.

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt. 11(2), 024006 (2006).
[CrossRef] [PubMed]

McCamy, C. S.

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17(2), 142–144 (1992).
[CrossRef]

Nayatani, Y.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

Ng, S.

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt. 11(2), 024006 (2006).
[CrossRef] [PubMed]

Ohno, Y.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[CrossRef]

Ou, H.

Petersen, P. M.

Poh, C. F.

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt. 11(2), 024006 (2006).
[CrossRef] [PubMed]

Rahman, M.

M. Rahman, P. Chaturvedi, A. M. Gillenwater, and R. Richards-Kortum, “Low-cost, multimodal, portable screening system for early detection of oral cancer,” J. Biomed. Opt. 13(3), 030502 (2008).
[CrossRef] [PubMed]

Richards-Kortum, R.

M. Rahman, P. Chaturvedi, A. M. Gillenwater, and R. Richards-Kortum, “Low-cost, multimodal, portable screening system for early detection of oral cancer,” J. Biomed. Opt. 13(3), 030502 (2008).
[CrossRef] [PubMed]

Rigg, B.

C. J. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[CrossRef]

Rosin, M. P.

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt. 11(2), 024006 (2006).
[CrossRef] [PubMed]

Shimizu, M.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

Shur, M.

Sun, W. S.

Thornton, W. A.

Tsuei, C. H.

Vaicekauskas, R.

Wang, H. C.

Whitehead, P.

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt. 11(2), 024006 (2006).
[CrossRef] [PubMed]

Williams, P. M.

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt. 11(2), 024006 (2006).
[CrossRef] [PubMed]

Worthey, J. A.

J. A. Worthey, “Color rendering: Asking the question,” Color Res. Appl. 28(6), 403–412 (2003).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, “Medical application of a color reproduction system with a multispectral camera,” Dig. Color Imaging Biomed., 33–38 (2001)

Yano, T.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

Zeng, H.

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt. 11(2), 024006 (2006).
[CrossRef] [PubMed]

Zhang, L.

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt. 11(2), 024006 (2006).
[CrossRef] [PubMed]

Žukauskas, A.

Color Res. Appl.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

J. A. Worthey, “Color rendering: Asking the question,” Color Res. Appl. 28(6), 403–412 (2003).
[CrossRef]

C. J. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[CrossRef]

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17(2), 142–144 (1992).
[CrossRef]

Dig. Color Imaging Biomed.

M. Yamaguchi, “Medical application of a color reproduction system with a multispectral camera,” Dig. Color Imaging Biomed., 33–38 (2001)

J. Biomed. Opt.

M. Rahman, P. Chaturvedi, A. M. Gillenwater, and R. Richards-Kortum, “Low-cost, multimodal, portable screening system for early detection of oral cancer,” J. Biomed. Opt. 13(3), 030502 (2008).
[CrossRef] [PubMed]

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt. 11(2), 024006 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Opt. Eng.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[CrossRef]

Opt. Express

Other

J. von Kries, Chromatic Adaptation, (Festschrift der Albrecht-Ludwigs-Universität 1902). Translation from D.L. MacAdam, Colorimetry-Fundamentals (SPIE Milestone Series MS 77 1993).

M. D. Fairchild, Color Appearance Models (John Wiley & Sons, 2005) p. 114.

http://msdn.microsoft.com/zh-tw/express/aa718373 .

CIE 17.4–1987, “International lighting vocabulary,” No.845–02–59 (1987).

CIE 13.3–1995, “Method of measuring and specifying colour rendering properties of light sources,” (1995).

M. Anderson, R. Motta, S. Chandrasekar, and M. Stokes, “Proposal for a standard default color space for the internet: sRGB,” IS&T/SID 4th Color Imaging Conference Proc. 238 (1996), also see http://www.w3.org/Graphics/Color/sRGB.html

P. Green and L. MacDonald, Colour Engineering: Achieving Device Independent Colour (Wiley, 2002).

E. Svistun, U. Utzinger, R. Jacob, R. K. Rebecca, A. El-Naggar, and A. Gillenwater, “Optimal visual perception and detection of oral cavity neoplasia reflectance and fluorescence,” Biomedical Topical Meeting TuA3 (2002).

D. Roblyer, C. Kurachi, A. El-Naggar, M. D. Williams, A. M. Gillenwater and R. Richards-Kortum, “Multispectral and hyperspectral in vivo imaging of the oral cavity for neoplastic tissue detection,” Biomedical Optics BTuD1 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Oral images of a 4-year-old child suffering from herpangina caused by enterovirus infection. (a) normal oral cavity with no infection. (b) Day One, (c) Day Two and (d) Day Three of oral cavity infection.

Fig. 2
Fig. 2

Different regions of the oral cavity defined for analysis, in which “Lesion*” refers to an infected site, inflamed on Day Two, but having developed mucosal lesions on Day Three.

Fig. 3
Fig. 3

(a) CRI and (b) average color difference at given CCTs under various illuminants.

Fig. 4
Fig. 4

The color image reproduction of an oral cavity at Day Two with different RGB W-LEDs CCTs light sources

Fig. 5
Fig. 5

The simulated images of oral cavity under the illumination of (a) RGB W-LED with CCT of 6525K (CRI:60), (b) W-LED with CCT of 7113K (CRI:79), (c) CIE C light (CRI:98), and (d) CIE D65 (CRI:100).

Fig. 6
Fig. 6

Color difference distribution diagrams of normal, inflamed and impending- lesion (Lesion*) regions in the oral cavities of ten patients under the illumination of different types of LEDs, (a) and (b) are illuminated by commercial RGB LEDs, and (c) to (f) by RGBY LEDs. The left-side figures, (a), (c), and (e), are the results from the normal and inflamed tissues, and the right-side figures, (b), (d), and (f), are the results from the inflamed and impending-lesion (Lesion*) regions.

Fig. 7
Fig. 7

The simulated images of an oral cavity under the illumination of (a) a fluorescent lamp, (b) a blue LED, and (c) a red-green LED light source.

Fig. 8
Fig. 8

(a) An image of inflammation of a hand caused by allergies and (b) its color difference distribution diagram.

Fig. 9
Fig. 9

The computer program written for spectral estimation and color reproduction in this study. The parts of the program are: (a) input of the original image, (b) selection of color difference comparison areas, (c) replacement of light sources, (d) spectral power distribution of the light sources, (e) the simulation results, and (f) calculation of color differences. The characteristics of the light source such as color rendering properties, correlated color temperature (CCT) and white point are also shown in the interface. When the simulation process is complete, the estimated spectrum can be viewed by clicking the button “Spectrum” as shown at the top of Part (b). The camera settings can change the color correction formula and its white balance mode, which can make the simulation more accurate. http://140.123.76.138/hcw_lab/colorfactoryen.zip.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

[α] T = [D] T pinv[E]
[ X Y Z ]=[T][ f(Rsrgb) f(Gsrgb) f(Bsrgb) ]
[T]=[ 0.4124 0.3576 0.1805 0.2126 0.7152 0.0722 0.0193 0.1192 0.9505 ]
f(n)={ ( n+0.055 1.055 ) 2.4 , n>0.04045 ( n 12.92 ) ,otherwise
X=k 380nm 780nm S(λ)R(λ) x ¯ (λ)dλ
Y=k 380nm 780nm S(λ)R(λ) y ¯ (λ)dλ
Z=k 380nm 780nm S(λ)R(λ) z ¯ (λ)dλ
k=100/ 380nm 780nm S(λ) y ¯ (λ)dλ
[C]=[A]pinv[F]
[F]= [ 1,R,G,B,RG,GB,BR, R 2 , G 2 , B 2 ,RGB, R 3 , G 3 , B 3 ,R G 2 ,R B 2 ,G R 2 ,G B 2 ,B R 2 ,B G 2 ] T
[ Corrected RGB ]=[ C ][ K ]
[M]=[α]pinv[β]
[Spectra] 380780nm =[E][M][ X Y Z ]
L * =116f( Y Y n )16
a * =500[ f( X X n )f( Y Y n ) ]
b * =200[ f( Y Y n )f( Z Z n ) ]
f(n)= n 1 3 ,for n>0.008856 otherwise f(n)=7.787n+0.137931
Δ E ab * = (Δ L * ) 2 + (Δ a * ) 2 + (Δ b * ) 2
u= 4X X+15Y+3Z
v= 6Y X+15Y+3Z
U * =13 W * (u u 0 )
V * =13 W * (v v 0 )
W * =25 Y 1 3 17
Δ E i = (Δ U * ) 2 + (Δ V * ) 2 + (Δ W * ) 2
R d =255(Δ E ab * max Δ E ab * )[255/(Δ E ab * max Δ E ab * min )]
G d =255| Δ E ab * Δ E ab * mid |[255/(Δ E ab * max Δ E ab * mid )]
B d =255(Δ E ab * Δ E ab * min )[255/(Δ E ab * max Δ E ab * min )]

Metrics