Abstract

A miniature polarimetric interferometer with the twist of a highly-birefringent microfiber is demonstrated. Good transmission spectral characteristics, which are co-governed by the birefringence and the twist degree of the microfiber, are investigated. The structure exhibits extremely-high sensitivity of around 24,373 nm per refractive-index unit and excellent temperature stability of better than 0.005nm/°C. Featured with compactness, reconfigurability, stability, robustness, and compatibility with other fiberized components, our device has potential in tunable filtering, sensing, multi-wavelength lasing, and etc.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  2. Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86, 191112 (2008).
  3. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
    [CrossRef]
  4. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [CrossRef] [PubMed]
  5. M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13(11), 4331–4340 (2005).
    [CrossRef] [PubMed]
  6. S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett. 34(3), 253–255 (2009).
    [CrossRef] [PubMed]
  7. T. Wang, X. H. Li, F. F. Liu, W. H. Long, Z. Y. Zhang, L. M. Tong, and Y. K. Su, “Enhanced fast light in microfiber ring resonator with a Sagnac loop reflector,” Opt. Express 18(15), 16156–16161 (2010).
    [CrossRef] [PubMed]
  8. S. D. Lim, K. J. Park, B. Y. Kim, K. Lee, and S. B. Lee, “An optical microfiber Sagnac interferometer with adjustable transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JWA7.
  9. A. M. Zheltikov, “Birefringence of guided modes in photonic wires: Gaussian-mode analysis,” Opt. Comrnun. 252(1–3), 78–83 (2005).
    [CrossRef]
  10. J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
    [CrossRef] [PubMed]
  11. M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).
  12. M. Koshiba and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18(5), 737–743 (2000).
    [CrossRef]
  13. D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
    [CrossRef]
  14. Q. Wu, Y. Ma, J. Yuan, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “Evanescent field coupling between two parallel close contact SMS fiber structures,” Opt. Express 20(3), 3098–3109 (2012).
    [CrossRef] [PubMed]
  15. T. E. Smith and R. F. Bonner, “Refractive index temperature data for anhydrous ethyl alcohol,” Anal. Chem. 24(3), 517–518 (1952).
    [CrossRef]
  16. P. Wang, L. Zhang, Z. Y. Yang, F. X. Gu, S. S. Wang, Q. Yang, and L. M. Tong, “Fusion spliced microfiber closed-loop resonators,” IEEE Photon. Technol. Lett. 22(15), 1075–1077 (2010).
    [CrossRef]

2012 (1)

2011 (1)

2010 (2)

T. Wang, X. H. Li, F. F. Liu, W. H. Long, Z. Y. Zhang, L. M. Tong, and Y. K. Su, “Enhanced fast light in microfiber ring resonator with a Sagnac loop reflector,” Opt. Express 18(15), 16156–16161 (2010).
[CrossRef] [PubMed]

P. Wang, L. Zhang, Z. Y. Yang, F. X. Gu, S. S. Wang, Q. Yang, and L. M. Tong, “Fusion spliced microfiber closed-loop resonators,” IEEE Photon. Technol. Lett. 22(15), 1075–1077 (2010).
[CrossRef]

2009 (1)

2008 (1)

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86, 191112 (2008).

2007 (1)

2006 (1)

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

2005 (2)

A. M. Zheltikov, “Birefringence of guided modes in photonic wires: Gaussian-mode analysis,” Opt. Comrnun. 252(1–3), 78–83 (2005).
[CrossRef]

M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13(11), 4331–4340 (2005).
[CrossRef] [PubMed]

2003 (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2000 (1)

1988 (1)

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
[CrossRef]

1952 (1)

T. E. Smith and R. F. Bonner, “Refractive index temperature data for anhydrous ethyl alcohol,” Anal. Chem. 24(3), 517–518 (1952).
[CrossRef]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Bai, J.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86, 191112 (2008).

Bonner, R. F.

T. E. Smith and R. F. Bonner, “Refractive index temperature data for anhydrous ethyl alcohol,” Anal. Chem. 24(3), 517–518 (1952).
[CrossRef]

Brambilla, G.

Chang, Y. L.

Farrell, G.

Gao, S.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gu, F. X.

P. Wang, L. Zhang, Z. Y. Yang, F. X. Gu, S. S. Wang, Q. Yang, and L. M. Tong, “Fusion spliced microfiber closed-loop resonators,” IEEE Photon. Technol. Lett. 22(15), 1075–1077 (2010).
[CrossRef]

Guan, B. O.

Guo, X.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Horak, P.

Hou, C. L.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86, 191112 (2008).

Hu, Z. F.

Jiang, X. S.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Jin, L.

Koshiba, M.

Li, J.

Li, X. H.

Li, Y. H.

Liu, F. F.

Long, W. H.

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Ma, Y.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mortimore, D. B.

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
[CrossRef]

Quan, Z.

Ran, Y.

Semenova, Y.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Smith, T. E.

T. E. Smith and R. F. Bonner, “Refractive index temperature data for anhydrous ethyl alcohol,” Anal. Chem. 24(3), 517–518 (1952).
[CrossRef]

Su, Y. K.

Sumetsky, M.

Sun, L. P.

Tong, L. M.

P. Wang, L. Zhang, Z. Y. Yang, F. X. Gu, S. S. Wang, Q. Yang, and L. M. Tong, “Fusion spliced microfiber closed-loop resonators,” IEEE Photon. Technol. Lett. 22(15), 1075–1077 (2010).
[CrossRef]

T. Wang, X. H. Li, F. F. Liu, W. H. Long, Z. Y. Zhang, L. M. Tong, and Y. K. Su, “Enhanced fast light in microfiber ring resonator with a Sagnac loop reflector,” Opt. Express 18(15), 16156–16161 (2010).
[CrossRef] [PubMed]

S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett. 34(3), 253–255 (2009).
[CrossRef] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tsao, A.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Tsuji, Y.

Vienne, G.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Wang, P.

Q. Wu, Y. Ma, J. Yuan, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “Evanescent field coupling between two parallel close contact SMS fiber structures,” Opt. Express 20(3), 3098–3109 (2012).
[CrossRef] [PubMed]

P. Wang, L. Zhang, Z. Y. Yang, F. X. Gu, S. S. Wang, Q. Yang, and L. M. Tong, “Fusion spliced microfiber closed-loop resonators,” IEEE Photon. Technol. Lett. 22(15), 1075–1077 (2010).
[CrossRef]

Wang, S. S.

P. Wang, L. Zhang, Z. Y. Yang, F. X. Gu, S. S. Wang, Q. Yang, and L. M. Tong, “Fusion spliced microfiber closed-loop resonators,” IEEE Photon. Technol. Lett. 22(15), 1075–1077 (2010).
[CrossRef]

S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett. 34(3), 253–255 (2009).
[CrossRef] [PubMed]

Wang, T.

Wu, Q.

Wu, Y.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86, 191112 (2008).

Xu, F.

Yang, D. R.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yang, G. G.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86, 191112 (2008).

Yang, Q.

P. Wang, L. Zhang, Z. Y. Yang, F. X. Gu, S. S. Wang, Q. Yang, and L. M. Tong, “Fusion spliced microfiber closed-loop resonators,” IEEE Photon. Technol. Lett. 22(15), 1075–1077 (2010).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yang, Z. Y.

P. Wang, L. Zhang, Z. Y. Yang, F. X. Gu, S. S. Wang, Q. Yang, and L. M. Tong, “Fusion spliced microfiber closed-loop resonators,” IEEE Photon. Technol. Lett. 22(15), 1075–1077 (2010).
[CrossRef]

Yu, C.

Yuan, J.

Zeng, X.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86, 191112 (2008).

Zhang, L.

P. Wang, L. Zhang, Z. Y. Yang, F. X. Gu, S. S. Wang, Q. Yang, and L. M. Tong, “Fusion spliced microfiber closed-loop resonators,” IEEE Photon. Technol. Lett. 22(15), 1075–1077 (2010).
[CrossRef]

Zhang, Z. Y.

Zheltikov, A. M.

A. M. Zheltikov, “Birefringence of guided modes in photonic wires: Gaussian-mode analysis,” Opt. Comrnun. 252(1–3), 78–83 (2005).
[CrossRef]

Anal. Chem. (1)

T. E. Smith and R. F. Bonner, “Refractive index temperature data for anhydrous ethyl alcohol,” Anal. Chem. 24(3), 517–518 (1952).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett. 86, 191112 (2008).

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Wang, L. Zhang, Z. Y. Yang, F. X. Gu, S. S. Wang, Q. Yang, and L. M. Tong, “Fusion spliced microfiber closed-loop resonators,” IEEE Photon. Technol. Lett. 22(15), 1075–1077 (2010).
[CrossRef]

J. Lightwave Technol. (2)

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Comrnun. (1)

A. M. Zheltikov, “Birefringence of guided modes in photonic wires: Gaussian-mode analysis,” Opt. Comrnun. 252(1–3), 78–83 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Other (2)

M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

S. D. Lim, K. J. Park, B. Y. Kim, K. Lee, and S. B. Lee, “An optical microfiber Sagnac interferometer with adjustable transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JWA7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the HBMF interferometer. The cross-sectional fiber view and the photograph of a fabricated structure are also provided as insets.

Fig. 2
Fig. 2

(a) Fabrication setup of the HBMF interferometer. (b) Transmission spectra in respect of the turn angle. (c) Transmission spectra for the interferometers with d = 13mm, a = 3.0μm and d = 2.3mm, a = 2.7μm, respectively.

Fig. 3
Fig. 3

(a) Transmission spectra of the HBMF interferometer in alcohol with the external RI rising from 1.3550 to 1.3586. (b) Relationship between the dip wavelength, the external refractive index, and the temperature. The dots indicate the experimental temperature points (circles), the first-round measured wavelength points (triangles), and the second-round measured wavelength points (squares), respectively, the solid line indicates the linear fit results, and the dashed curve indicates the simulation results by the use of a full-vector finite element method.

Fig. 4
Fig. 4

Transmission spectra of the HBMF interferometer with the temperature range from 25°C to 140°C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ=( 2π /λ )BL
P 2x,y = ( k 1x,y 2 + k 2x,y 2 ) 2 P 1x,y sin 2 2θ sin 2 ϕ 2 [ ( k 1x,y 2 + k 2x,y 2 ) 2 P 1x,y ( k 1x k 1y k 2x k 2y ) 2 P 1y,x ]

Metrics