Abstract

A mode-evolution-based polarization rotator-splitter built on InP substrate is proposed by combining a mode converter and an adiabatic asymmetric Y-coupler. The mode converter, consisting of a bi-level taper and a width taper, effectively converts the fundamental TM mode into the second order TE mode without changing the polarization of the fundamental TE mode. The following adiabatic asymmetric Y-coupler splits the fundamental and the second order TE modes and also converts the second order TE mode into the fundamental TE mode. A shallow etched structure is proposed for the width taper to enhance the polarization conversion efficiency. The device has a total length of 1350 µm, a polarization extinction ratio over 25 dB and an insertion loss below 0.5 dB both for TE and TM modes, over the wavelength range from 1528 to 1612 nm covering all C + L band. Because the device is designed based on mode evolution principle, it has a large fabrication tolerance. The insertion loss remains below 1 dB and the polarization extinction ratio remains over 17 dB with respect to a width variation of +/− 0.12 µm at the wavelength of 1570 nm, or +/− 0.08 µm over the entire C + L band.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
    [CrossRef]
  2. L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol.25(3), 740–746 (2007).
    [CrossRef]
  3. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008).
    [CrossRef] [PubMed]
  4. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
    [CrossRef] [PubMed]
  5. R. Nagarajan, J. Rahn, M. Kato, J. Pleumeekers, D. Lambert, V. Lal, H. S. Tsai, A. Nilsson, A. Dentai, M. Kuntz, R. Malendevich, J. Tang, J. Zhang, T. Butrie, M. Raburn, B. Little, W. Chen, G. Goldfarb, V. Dominic, B. Taylor, M. Reffle, F. Kish, and D. Welch, “10 Channel, 45.6 Gb/s per channel, polarization-multiplexed DQPSK, InP receiver photonic integrated circuit,” J. Lightwave Technol.29(4), 386–395 (2011).
    [CrossRef]
  6. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett.30(2), 138–140 (2005).
    [CrossRef] [PubMed]
  7. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett.30(9), 967–969 (2005).
    [CrossRef] [PubMed]
  8. J. Zhang, M. Yu, G. Lo, and D. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron.16(1), 53–60 (2010).
    [CrossRef]
  9. L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett.36(4), 469–471 (2011).
    [CrossRef] [PubMed]
  10. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express19(11), 10940–10949 (2011).
    [CrossRef] [PubMed]
  11. K. Mertens, B. Scholl, and H. J. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol.13(10), 2087–2092 (1995).
    [CrossRef]
  12. K. Mertens, B. Opitz, R. Hovel, K. Heime, and H. J. Schmitt, “First realized polarization converter based on hybrid supermodes,” IEEE Photon. Technol. Lett.10(3), 388–390 (1998).
    [CrossRef]
  13. W. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron.11(1), 32–39 (1975).
    [CrossRef]
  14. T. A. Ramadan, R. Scarmozzino, and R. M. Osgood., “Adiabatic couplers: design rules and optimization,” J. Lightwave Technol.16(2), 277–283 (1998).
    [CrossRef]
  15. Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27(3), 556–566 (1991).
    [CrossRef]
  16. T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett.18(5), 709–711 (2006).
    [CrossRef]
  17. J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007).
    [CrossRef]
  18. E. M. Garmire and H. Stoll, “Propagation losses in metal-film-substrate optical waveguides,” IEEE J. Quantum Electron.8(10), 763–766 (1972).
    [CrossRef]
  19. D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE4987, 69–82 (2003).
    [CrossRef]
  20. J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, H. H. van Brug, and P. M. Demeester, “Adiabatic 3-db-coupler on InGaAsP/InP using double masking,” Proc. SPIE2449, 349–354 (1995).
    [CrossRef]
  21. L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization Splitter/converter in InGaAsP-InP,” IEEE Photon. Technol. Lett.19(17), 1286–1288 (2007).
    [CrossRef]

2011

2010

J. Zhang, M. Yu, G. Lo, and D. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron.16(1), 53–60 (2010).
[CrossRef]

2008

2007

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007).
[CrossRef]

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization Splitter/converter in InGaAsP-InP,” IEEE Photon. Technol. Lett.19(17), 1286–1288 (2007).
[CrossRef]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol.25(3), 740–746 (2007).
[CrossRef]

2006

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett.18(5), 709–711 (2006).
[CrossRef]

2005

2003

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE4987, 69–82 (2003).
[CrossRef]

1998

T. A. Ramadan, R. Scarmozzino, and R. M. Osgood., “Adiabatic couplers: design rules and optimization,” J. Lightwave Technol.16(2), 277–283 (1998).
[CrossRef]

K. Mertens, B. Opitz, R. Hovel, K. Heime, and H. J. Schmitt, “First realized polarization converter based on hybrid supermodes,” IEEE Photon. Technol. Lett.10(3), 388–390 (1998).
[CrossRef]

1995

K. Mertens, B. Scholl, and H. J. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol.13(10), 2087–2092 (1995).
[CrossRef]

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, H. H. van Brug, and P. M. Demeester, “Adiabatic 3-db-coupler on InGaAsP/InP using double masking,” Proc. SPIE2449, 349–354 (1995).
[CrossRef]

1991

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27(3), 556–566 (1991).
[CrossRef]

1975

W. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron.11(1), 32–39 (1975).
[CrossRef]

1972

E. M. Garmire and H. Stoll, “Propagation losses in metal-film-substrate optical waveguides,” IEEE J. Quantum Electron.8(10), 763–766 (1972).
[CrossRef]

Aalto, T.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett.18(5), 709–711 (2006).
[CrossRef]

Augustin, L. M.

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization Splitter/converter in InGaAsP-InP,” IEEE Photon. Technol. Lett.19(17), 1286–1288 (2007).
[CrossRef]

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol.25(3), 740–746 (2007).
[CrossRef]

Baets, R.

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Bogaerts, W.

Bowers, J. E.

Burns, W.

W. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron.11(1), 32–39 (1975).
[CrossRef]

Butrie, T.

Cheben, P.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007).
[CrossRef]

Chen, L.

Chen, W.

Chen, Y. K.

Dai, D.

de Laat, W. J. M.

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol.25(3), 740–746 (2007).
[CrossRef]

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization Splitter/converter in InGaAsP-InP,” IEEE Photon. Technol. Lett.19(17), 1286–1288 (2007).
[CrossRef]

Delage, A.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007).
[CrossRef]

Demeester, P. M.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, H. H. van Brug, and P. M. Demeester, “Adiabatic 3-db-coupler on InGaAsP/InP using double masking,” Proc. SPIE2449, 349–354 (1995).
[CrossRef]

Densmore, A.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007).
[CrossRef]

Dentai, A.

Doerr, C. R.

Dominic, V.

Dumon, P.

Felici, T. P.

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE4987, 69–82 (2003).
[CrossRef]

Fukuda, H.

Gallagher, D. F. G.

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE4987, 69–82 (2003).
[CrossRef]

Garmire, E. M.

E. M. Garmire and H. Stoll, “Propagation losses in metal-film-substrate optical waveguides,” IEEE J. Quantum Electron.8(10), 763–766 (1972).
[CrossRef]

Goldfarb, G.

Hanfoug, R.

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol.25(3), 740–746 (2007).
[CrossRef]

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization Splitter/converter in InGaAsP-InP,” IEEE Photon. Technol. Lett.19(17), 1286–1288 (2007).
[CrossRef]

Harjanne, M.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett.18(5), 709–711 (2006).
[CrossRef]

Haus, H. A.

Heimala, P.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett.18(5), 709–711 (2006).
[CrossRef]

Heime, K.

K. Mertens, B. Opitz, R. Hovel, K. Heime, and H. J. Schmitt, “First realized polarization converter based on hybrid supermodes,” IEEE Photon. Technol. Lett.10(3), 388–390 (1998).
[CrossRef]

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27(3), 556–566 (1991).
[CrossRef]

Hovel, R.

K. Mertens, B. Opitz, R. Hovel, K. Heime, and H. J. Schmitt, “First realized polarization converter based on hybrid supermodes,” IEEE Photon. Technol. Lett.10(3), 388–390 (1998).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett.30(9), 967–969 (2005).
[CrossRef] [PubMed]

Itabashi, S.

Janz, S.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007).
[CrossRef]

Kapulainen, M.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett.18(5), 709–711 (2006).
[CrossRef]

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Kato, M.

Kazarinov, R. F.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27(3), 556–566 (1991).
[CrossRef]

Kish, F.

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27(3), 556–566 (1991).
[CrossRef]

Kuntz, M.

Kwong, D.

J. Zhang, M. Yu, G. Lo, and D. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron.16(1), 53–60 (2010).
[CrossRef]

Lal, V.

Lambert, D.

Lamontagne, B.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007).
[CrossRef]

Lapointe, J.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007).
[CrossRef]

Little, B.

Lo, G.

J. Zhang, M. Yu, G. Lo, and D. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron.16(1), 53–60 (2010).
[CrossRef]

Malendevich, R.

Mertens, K.

K. Mertens, B. Opitz, R. Hovel, K. Heime, and H. J. Schmitt, “First realized polarization converter based on hybrid supermodes,” IEEE Photon. Technol. Lett.10(3), 388–390 (1998).
[CrossRef]

K. Mertens, B. Scholl, and H. J. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol.13(10), 2087–2092 (1995).
[CrossRef]

Metaal, E. G.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, H. H. van Brug, and P. M. Demeester, “Adiabatic 3-db-coupler on InGaAsP/InP using double masking,” Proc. SPIE2449, 349–354 (1995).
[CrossRef]

Milton, A.

W. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron.11(1), 32–39 (1975).
[CrossRef]

Nagarajan, R.

Nilsson, A.

Oei, Y. S.

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol.25(3), 740–746 (2007).
[CrossRef]

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, H. H. van Brug, and P. M. Demeester, “Adiabatic 3-db-coupler on InGaAsP/InP using double masking,” Proc. SPIE2449, 349–354 (1995).
[CrossRef]

Opitz, B.

K. Mertens, B. Opitz, R. Hovel, K. Heime, and H. J. Schmitt, “First realized polarization converter based on hybrid supermodes,” IEEE Photon. Technol. Lett.10(3), 388–390 (1998).
[CrossRef]

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27(3), 556–566 (1991).
[CrossRef]

Osgood, R. M.

Pedersen, J. W.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, H. H. van Brug, and P. M. Demeester, “Adiabatic 3-db-coupler on InGaAsP/InP using double masking,” Proc. SPIE2449, 349–354 (1995).
[CrossRef]

Pleumeekers, J.

Pluk, E.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Post, E.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007).
[CrossRef]

Raburn, M.

Rahn, J.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Ramadan, T. A.

Reffle, M.

Scarmozzino, R.

Schmid, J. H.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007).
[CrossRef]

Schmitt, H. J.

K. Mertens, B. Opitz, R. Hovel, K. Heime, and H. J. Schmitt, “First realized polarization converter based on hybrid supermodes,” IEEE Photon. Technol. Lett.10(3), 388–390 (1998).
[CrossRef]

K. Mertens, B. Scholl, and H. J. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol.13(10), 2087–2092 (1995).
[CrossRef]

Scholl, B.

K. Mertens, B. Scholl, and H. J. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol.13(10), 2087–2092 (1995).
[CrossRef]

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27(3), 556–566 (1991).
[CrossRef]

Shinojima, H.

Smit, M. K.

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol.25(3), 740–746 (2007).
[CrossRef]

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization Splitter/converter in InGaAsP-InP,” IEEE Photon. Technol. Lett.19(17), 1286–1288 (2007).
[CrossRef]

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Solehmainen, K.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett.18(5), 709–711 (2006).
[CrossRef]

Stoll, H.

E. M. Garmire and H. Stoll, “Propagation losses in metal-film-substrate optical waveguides,” IEEE J. Quantum Electron.8(10), 763–766 (1972).
[CrossRef]

Taillaert, D.

Tang, J.

Taylor, B.

Tsai, H. S.

Tsuchizawa, T.

van Brug, H. H.

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, H. H. van Brug, and P. M. Demeester, “Adiabatic 3-db-coupler on InGaAsP/InP using double masking,” Proc. SPIE2449, 349–354 (1995).
[CrossRef]

van de Moosdijk, M. J. E.

van der Tol, J. J. G. M.

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol.25(3), 740–746 (2007).
[CrossRef]

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization Splitter/converter in InGaAsP-InP,” IEEE Photon. Technol. Lett.19(17), 1286–1288 (2007).
[CrossRef]

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, H. H. van Brug, and P. M. Demeester, “Adiabatic 3-db-coupler on InGaAsP/InP using double masking,” Proc. SPIE2449, 349–354 (1995).
[CrossRef]

van Dijk, P. W. L.

Van Thourhout, D.

Waldron, P.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007).
[CrossRef]

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett.30(2), 138–140 (2005).
[CrossRef] [PubMed]

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett.30(9), 967–969 (2005).
[CrossRef] [PubMed]

Welch, D.

Xu, D.-X.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007).
[CrossRef]

Yamada, K.

Yu, M.

J. Zhang, M. Yu, G. Lo, and D. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron.16(1), 53–60 (2010).
[CrossRef]

Zhang, J.

IEEE J. Quantum Electron.

W. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron.11(1), 32–39 (1975).
[CrossRef]

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27(3), 556–566 (1991).
[CrossRef]

E. M. Garmire and H. Stoll, “Propagation losses in metal-film-substrate optical waveguides,” IEEE J. Quantum Electron.8(10), 763–766 (1972).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Zhang, M. Yu, G. Lo, and D. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron.16(1), 53–60 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Mertens, B. Opitz, R. Hovel, K. Heime, and H. J. Schmitt, “First realized polarization converter based on hybrid supermodes,” IEEE Photon. Technol. Lett.10(3), 388–390 (1998).
[CrossRef]

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett.18(5), 709–711 (2006).
[CrossRef]

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delage, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett.19(11), 855–857 (2007).
[CrossRef]

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization Splitter/converter in InGaAsP-InP,” IEEE Photon. Technol. Lett.19(17), 1286–1288 (2007).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE4987, 69–82 (2003).
[CrossRef]

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, H. H. van Brug, and P. M. Demeester, “Adiabatic 3-db-coupler on InGaAsP/InP using double masking,” Proc. SPIE2449, 349–354 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The schematic top view (a) and cross section views (b)(c)(d)(e) of the proposed mode-evolution-based polarization rotator and splitter consisting of a pre-mode converter, a width taper, and an asymmetric Y coupler integrated with a TE mode polarizer.

Fig. 2
Fig. 2

The effective index of TE0, the 2nd highest index mode, H1, and the 3rd highest index mode, H2, as a function of waveguide width at the wavelength of 1570 nm.

Fig. 3
Fig. 3

The effective index gap between two hybrid modes with 50% TE and 50% TM polarization and the waveguide width as a function of etch depth into the InGaAsP layer (inset) at the wavelength of 1570 nm.

Fig. 4
Fig. 4

Comparison of the mode field distributions with and without gold overlap. Electric field in horizontal direction, Ex, is plotted for TE0 mode; magnetic field in horizontal direction, Hx, is plotted for TM0 mode.

Fig. 5
Fig. 5

The geometries of the mode-evolution-based polarization rotator-splitter after optimization.

Fig. 6
Fig. 6

The normalized TE0 mode output power from the upper (diamond) and lower (square) Y-branches and the normalized TM0 mode output power from the lower (triangle) Y-branch as function of wavelength excited by TE0 mode input (a) and TM0 mode input (b).

Fig. 7
Fig. 7

(a) The PER and (b) the insertion loss of TE0 and TM0 modes at 1528 nm, 1570 nm, and 1612 nm.

Metrics