Abstract

We proposed a scheme for detecting the atom-field coupling constant in the Dicke superradiation regime based on a hybrid cavity optomechanical system assisted by an atomic gas. The critical behavior of the Dicke model was obtained analytically using the spin-coherent-state representation. Without regard to the dynamics of cavity field an analytical formula of one-to-one correspondence between movable mirror’s steady position and atom-field coupling constant for a given number of atoms is obtained. Thus the atom-field coupling constant can be probed by measuring the movable mirror’s steady position, which is another effect of the cavity optomechanics.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lebedew, “Experimental examination of light pressure,” Ann. Phys. (Leipzig) 6, 433–458 (1901).
  2. E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev. 13, 307 (1901).
  3. T. Corbitt and N. Mavalvala, “Quantum noise in gravitational-wave interferometers,” J. Opt. B: Quantum Semiclass. Opt 6, S675–S683 (2004).
    [CrossRef]
  4. T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007).
    [CrossRef] [PubMed]
  5. S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
    [CrossRef] [PubMed]
  6. P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 833174 (1999).
    [CrossRef]
  7. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).
    [CrossRef] [PubMed]
  8. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007).
    [CrossRef] [PubMed]
  9. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [CrossRef] [PubMed]
  10. J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [CrossRef] [PubMed]
  11. D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
    [CrossRef]
  12. K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Physics Today 58, 36–42 (2005).
    [CrossRef]
  13. S. Bose, K. Jacobs, and P. L. Knight, “Preparation of nonclassical states in cavities with a moving mirror,” Phys. Rev. A 56, 4175 (1997).
    [CrossRef]
  14. W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
    [CrossRef] [PubMed]
  15. F. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H. Yang, and Y. Chen, “Preparing a mechanical oscillator in non-Gaussian quantum states,” Phys. Rev. Lett. 105, 070403 (2010).
    [CrossRef] [PubMed]
  16. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).
    [CrossRef] [PubMed]
  17. C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A 77, 050307 (2008).
    [CrossRef]
  18. L. Zhou, Y. Han, J. Jing, and W. Zhang, “Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence,” Phys. Rev. A 83, 052117 (2011).
    [CrossRef]
  19. M. Ludwig, K. Hammerer, and F. Marquardt, “Entanglement of mechanical oscillators coupled to a nonequilibrium environment,” Phys. Rev. A 82, 012333 (2010).
    [CrossRef]
  20. K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett. 107, 123601 (2011).
    [CrossRef] [PubMed]
  21. S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
    [CrossRef] [PubMed]
  22. L. Tian and P. Zoller, “Coupled ion-nanomechanical systems,” Phys. Rev. Lett. 93, 266403 (2004).
    [CrossRef]
  23. K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
    [CrossRef] [PubMed]
  24. P. Treutlein, D. Hunger, S. Camerer, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip,” Phys. Rev. Lett. 99, 140403 (2007).
    [CrossRef] [PubMed]
  25. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
    [CrossRef] [PubMed]
  26. A. B. Bhattacherjee, “Cavity quantum optomechanics of ultracold atoms in an optical lattice: normal-mode splitting,” Phys. Rev. A 80, 043607 (2009).
    [CrossRef]
  27. D. Hunger, S. Camerer, T. W. Hänsch, D. König, J. P. Kotthaus, J. Reichel, and P. Treutlein, “Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator,” Phys. Rev. Lett. 104, 143002 (2010).
    [CrossRef] [PubMed]
  28. S. K. Steinke, S. Singh, M. E. Tasgin, P. Meystre, K. C. Schwab, and M. Vengalattore, “Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator,” Phys. Rev. A 84, 023841 (2011).
    [CrossRef]
  29. H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
    [CrossRef]
  30. Y. Chang and C. P. Sun, “Analog of the electromagnetically-induced-transparency effect for two nanomechanical or micromechanical resonators coupled to a spin ensemble,” Phys. Rev. A 83, 053834 (2011).
    [CrossRef]
  31. G. Chen, Y. Zhang, L. Xiao, J.-Q. Liang, and S. Jia, “Strong nonlinear coupling between an ultracold atomic ensemble and a nanomechanical oscillator,” Opt. Express 18, 23016–23023 (2010).
    [CrossRef] [PubMed]
  32. K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles,” Phys. Rev. Lett. 102, 020501 (2009).
    [CrossRef] [PubMed]
  33. Q. Sun, X.-H. Hu, W. M. Liu, X. C. Xie, and A.-C. Ji, “Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas,” Phys. Rev. A 84, 023822 (2011).
    [CrossRef]
  34. Q. Sun, X.-H. Hu, A.-C. Ji, and W. M. Liu, “Dynamics of a degenerate Fermi gas in a one-dimensional optical lattice coupled to a cavity,” Phys. Rev. A 83, 043606 (2011).
    [CrossRef]
  35. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
    [CrossRef]
  36. K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model,” Annals Phys.(N.Y.) 76, 360–404 (1973).
    [CrossRef]
  37. Y. K. Wang and F. T. Hioes, “Phase transition in the Dicke model of superradiance,” Phys. Rev. A 7, 831–836 (1973).
    [CrossRef]
  38. F. T. Hioes, “Phase transitions in some generalized Dicke models of superradiance,” Phys. Rev. A 8, 1440–1445 (1973).
    [CrossRef]
  39. C. Emary and T. Brandes, “Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model,” Phys. Rev. Lett. 90, 044101 (2003).
    [CrossRef] [PubMed]
  40. C. Emary and T. Brandes, “Chaos and the quantum phase transition in the Dicke model,” Phys. Rev. E 67, 066203 (2003).
    [CrossRef]
  41. N. Lambert, C. Emary, and T. Brandes, “Entanglement and entropy in a spin-boson quantum phase transition,” Phys. Rev. A 71, 053804 (2005).
    [CrossRef]
  42. G. D. Chiara, M. Paternostro, and G. M. Palma, “Entanglement detection in hybrid optomechanical systems,” Phys. Rev. A 83, 052324–052329 (2011).
    [CrossRef]
  43. G. Chen, J. Li, and J.-Q. Liang, “Critical property of the geometric phase in the Dicke model,” Phys. Rev. A 74, 054101 (2006).
    [CrossRef]
  44. T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet,” Phys. Rev. 58, 1098–1113 (1940).
    [CrossRef]
  45. J. P. Santos, F. L. Semião, and K. Furuya, “Probing the quantum phase transition in the Dicke model through mechanical vibrations,” Phys. Rev. A 82, 063801 (2010).
    [CrossRef]
  46. E. K. Irish, “Generalized rotating-wave approximation for arbitrarily large coupling,” Phys. Rev. Lett. 99, 173601 (2007).
    [CrossRef] [PubMed]
  47. S. Ashhab and F. Nori, “Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states,” Phys. Rev. A 81, 042311 (2010).
    [CrossRef]
  48. M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008).
    [CrossRef] [PubMed]
  49. F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
    [CrossRef]

2011 (9)

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[CrossRef]

L. Zhou, Y. Han, J. Jing, and W. Zhang, “Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence,” Phys. Rev. A 83, 052117 (2011).
[CrossRef]

K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett. 107, 123601 (2011).
[CrossRef] [PubMed]

S. K. Steinke, S. Singh, M. E. Tasgin, P. Meystre, K. C. Schwab, and M. Vengalattore, “Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator,” Phys. Rev. A 84, 023841 (2011).
[CrossRef]

Y. Chang and C. P. Sun, “Analog of the electromagnetically-induced-transparency effect for two nanomechanical or micromechanical resonators coupled to a spin ensemble,” Phys. Rev. A 83, 053834 (2011).
[CrossRef]

Q. Sun, X.-H. Hu, W. M. Liu, X. C. Xie, and A.-C. Ji, “Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas,” Phys. Rev. A 84, 023822 (2011).
[CrossRef]

Q. Sun, X.-H. Hu, A.-C. Ji, and W. M. Liu, “Dynamics of a degenerate Fermi gas in a one-dimensional optical lattice coupled to a cavity,” Phys. Rev. A 83, 043606 (2011).
[CrossRef]

G. D. Chiara, M. Paternostro, and G. M. Palma, “Entanglement detection in hybrid optomechanical systems,” Phys. Rev. A 83, 052324–052329 (2011).
[CrossRef]

2010 (6)

J. P. Santos, F. L. Semião, and K. Furuya, “Probing the quantum phase transition in the Dicke model through mechanical vibrations,” Phys. Rev. A 82, 063801 (2010).
[CrossRef]

S. Ashhab and F. Nori, “Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states,” Phys. Rev. A 81, 042311 (2010).
[CrossRef]

G. Chen, Y. Zhang, L. Xiao, J.-Q. Liang, and S. Jia, “Strong nonlinear coupling between an ultracold atomic ensemble and a nanomechanical oscillator,” Opt. Express 18, 23016–23023 (2010).
[CrossRef] [PubMed]

D. Hunger, S. Camerer, T. W. Hänsch, D. König, J. P. Kotthaus, J. Reichel, and P. Treutlein, “Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator,” Phys. Rev. Lett. 104, 143002 (2010).
[CrossRef] [PubMed]

M. Ludwig, K. Hammerer, and F. Marquardt, “Entanglement of mechanical oscillators coupled to a nonequilibrium environment,” Phys. Rev. A 82, 012333 (2010).
[CrossRef]

F. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H. Yang, and Y. Chen, “Preparing a mechanical oscillator in non-Gaussian quantum states,” Phys. Rev. Lett. 105, 070403 (2010).
[CrossRef] [PubMed]

2009 (3)

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[CrossRef] [PubMed]

A. B. Bhattacherjee, “Cavity quantum optomechanics of ultracold atoms in an optical lattice: normal-mode splitting,” Phys. Rev. A 80, 043607 (2009).
[CrossRef]

K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles,” Phys. Rev. Lett. 102, 020501 (2009).
[CrossRef] [PubMed]

2008 (5)

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[CrossRef]

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[CrossRef] [PubMed]

C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A 77, 050307 (2008).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008).
[CrossRef] [PubMed]

2007 (7)

F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
[CrossRef]

E. K. Irish, “Generalized rotating-wave approximation for arbitrarily large coupling,” Phys. Rev. Lett. 99, 173601 (2007).
[CrossRef] [PubMed]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007).
[CrossRef] [PubMed]

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

P. Treutlein, D. Hunger, S. Camerer, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip,” Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

2006 (2)

S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

G. Chen, J. Li, and J.-Q. Liang, “Critical property of the geometric phase in the Dicke model,” Phys. Rev. A 74, 054101 (2006).
[CrossRef]

2005 (2)

N. Lambert, C. Emary, and T. Brandes, “Entanglement and entropy in a spin-boson quantum phase transition,” Phys. Rev. A 71, 053804 (2005).
[CrossRef]

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Physics Today 58, 36–42 (2005).
[CrossRef]

2004 (2)

T. Corbitt and N. Mavalvala, “Quantum noise in gravitational-wave interferometers,” J. Opt. B: Quantum Semiclass. Opt 6, S675–S683 (2004).
[CrossRef]

L. Tian and P. Zoller, “Coupled ion-nanomechanical systems,” Phys. Rev. Lett. 93, 266403 (2004).
[CrossRef]

2003 (3)

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

C. Emary and T. Brandes, “Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model,” Phys. Rev. Lett. 90, 044101 (2003).
[CrossRef] [PubMed]

C. Emary and T. Brandes, “Chaos and the quantum phase transition in the Dicke model,” Phys. Rev. E 67, 066203 (2003).
[CrossRef]

2002 (1)

S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[CrossRef] [PubMed]

1999 (1)

P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 833174 (1999).
[CrossRef]

1997 (1)

S. Bose, K. Jacobs, and P. L. Knight, “Preparation of nonclassical states in cavities with a moving mirror,” Phys. Rev. A 56, 4175 (1997).
[CrossRef]

1973 (3)

K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model,” Annals Phys.(N.Y.) 76, 360–404 (1973).
[CrossRef]

Y. K. Wang and F. T. Hioes, “Phase transition in the Dicke model of superradiance,” Phys. Rev. A 7, 831–836 (1973).
[CrossRef]

F. T. Hioes, “Phase transitions in some generalized Dicke models of superradiance,” Phys. Rev. A 8, 1440–1445 (1973).
[CrossRef]

1954 (1)

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[CrossRef]

1940 (1)

T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet,” Phys. Rev. 58, 1098–1113 (1940).
[CrossRef]

1901 (2)

P. Lebedew, “Experimental examination of light pressure,” Ann. Phys. (Leipzig) 6, 433–458 (1901).

E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev. 13, 307 (1901).

Allman, M. S.

D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[CrossRef]

Ansmann, M.

M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008).
[CrossRef] [PubMed]

Ashhab, S.

S. Ashhab and F. Nori, “Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states,” Phys. Rev. A 81, 042311 (2010).
[CrossRef]

Aspelmeyer, M.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles,” Phys. Rev. Lett. 102, 020501 (2009).
[CrossRef] [PubMed]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Bäuerle, D.

S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Bhattacherjee, A. B.

A. B. Bhattacherjee, “Cavity quantum optomechanics of ultracold atoms in an optical lattice: normal-mode splitting,” Phys. Rev. A 80, 043607 (2009).
[CrossRef]

Bialczak, R. C.

M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008).
[CrossRef] [PubMed]

Blaser, F.

S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Bohm, H. R.

S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Böhm, H. R.

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

Børkje, K.

K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett. 107, 123601 (2011).
[CrossRef] [PubMed]

Bose, S.

S. Bose, K. Jacobs, and P. L. Knight, “Preparation of nonclassical states in cavities with a moving mirror,” Phys. Rev. A 56, 4175 (1997).
[CrossRef]

Bouwmeester, D.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

Brandes, T.

N. Lambert, C. Emary, and T. Brandes, “Entanglement and entropy in a spin-boson quantum phase transition,” Phys. Rev. A 71, 053804 (2005).
[CrossRef]

C. Emary and T. Brandes, “Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model,” Phys. Rev. Lett. 90, 044101 (2003).
[CrossRef] [PubMed]

C. Emary and T. Brandes, “Chaos and the quantum phase transition in the Dicke model,” Phys. Rev. E 67, 066203 (2003).
[CrossRef]

Brennecke, F.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[CrossRef] [PubMed]

Camerer, S.

D. Hunger, S. Camerer, T. W. Hänsch, D. König, J. P. Kotthaus, J. Reichel, and P. Treutlein, “Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator,” Phys. Rev. Lett. 104, 143002 (2010).
[CrossRef] [PubMed]

P. Treutlein, D. Hunger, S. Camerer, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip,” Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

Carmichael, H. J.

F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
[CrossRef]

Chan, J.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Chang, Y.

Y. Chang and C. P. Sun, “Analog of the electromagnetically-induced-transparency effect for two nanomechanical or micromechanical resonators coupled to a spin ensemble,” Phys. Rev. A 83, 053834 (2011).
[CrossRef]

Chen, G.

Chen, J. P.

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

Chen, Y.

F. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H. Yang, and Y. Chen, “Preparing a mechanical oscillator in non-Gaussian quantum states,” Phys. Rev. Lett. 105, 070403 (2010).
[CrossRef] [PubMed]

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

Chiara, G. D.

G. D. Chiara, M. Paternostro, and G. M. Palma, “Entanglement detection in hybrid optomechanical systems,” Phys. Rev. A 83, 052324–052329 (2011).
[CrossRef]

Cicak, K.

D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[CrossRef]

Cleland, A. N.

M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008).
[CrossRef] [PubMed]

Clerk, A. A.

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

Cohadon, P. F.

P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 833174 (1999).
[CrossRef]

Corbitt, T.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

T. Corbitt and N. Mavalvala, “Quantum noise in gravitational-wave interferometers,” J. Opt. B: Quantum Semiclass. Opt 6, S675–S683 (2004).
[CrossRef]

Danilishin, S.

F. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H. Yang, and Y. Chen, “Preparing a mechanical oscillator in non-Gaussian quantum states,” Phys. Rev. Lett. 105, 070403 (2010).
[CrossRef] [PubMed]

Dicke, R. H.

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[CrossRef]

Dimer, F.

F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
[CrossRef]

Donner, T.

D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[CrossRef]

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[CrossRef] [PubMed]

Emary, C.

N. Lambert, C. Emary, and T. Brandes, “Entanglement and entropy in a spin-boson quantum phase transition,” Phys. Rev. A 71, 053804 (2005).
[CrossRef]

C. Emary and T. Brandes, “Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model,” Phys. Rev. Lett. 90, 044101 (2003).
[CrossRef] [PubMed]

C. Emary and T. Brandes, “Chaos and the quantum phase transition in the Dicke model,” Phys. Rev. E 67, 066203 (2003).
[CrossRef]

Esslinger, T.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[CrossRef] [PubMed]

Estienne, B.

F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
[CrossRef]

Ferreira, A.

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

Furuya, K.

J. P. Santos, F. L. Semião, and K. Furuya, “Probing the quantum phase transition in the Dicke model through mechanical vibrations,” Phys. Rev. A 82, 063801 (2010).
[CrossRef]

Genes, C.

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[CrossRef] [PubMed]

C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A 77, 050307 (2008).
[CrossRef]

Gigan, S.

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Giovannetti, V.

S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[CrossRef] [PubMed]

Girvin, S. M.

K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett. 107, 123601 (2011).
[CrossRef] [PubMed]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

Gong, Z. R.

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[CrossRef]

Gröblacher, S.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Guerreiro, A.

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

Hammerer, K.

M. Ludwig, K. Hammerer, and F. Marquardt, “Entanglement of mechanical oscillators coupled to a nonequilibrium environment,” Phys. Rev. A 82, 012333 (2010).
[CrossRef]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[CrossRef] [PubMed]

K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles,” Phys. Rev. Lett. 102, 020501 (2009).
[CrossRef] [PubMed]

Han, Y.

L. Zhou, Y. Han, J. Jing, and W. Zhang, “Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence,” Phys. Rev. A 83, 052117 (2011).
[CrossRef]

Hänsch, T. W.

D. Hunger, S. Camerer, T. W. Hänsch, D. König, J. P. Kotthaus, J. Reichel, and P. Treutlein, “Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator,” Phys. Rev. Lett. 104, 143002 (2010).
[CrossRef] [PubMed]

P. Treutlein, D. Hunger, S. Camerer, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip,” Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

Harlow, J. W.

D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[CrossRef]

Heidmann, A.

P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 833174 (1999).
[CrossRef]

Hepp, K.

K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model,” Annals Phys.(N.Y.) 76, 360–404 (1973).
[CrossRef]

Hertzberg, J. B.

S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Hill, J. T.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Hioes, F. T.

Y. K. Wang and F. T. Hioes, “Phase transition in the Dicke model of superradiance,” Phys. Rev. A 7, 831–836 (1973).
[CrossRef]

F. T. Hioes, “Phase transitions in some generalized Dicke models of superradiance,” Phys. Rev. A 8, 1440–1445 (1973).
[CrossRef]

Hofheinz, M.

M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008).
[CrossRef] [PubMed]

Holstein, T.

T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet,” Phys. Rev. 58, 1098–1113 (1940).
[CrossRef]

Hu, X.-H.

Q. Sun, X.-H. Hu, A.-C. Ji, and W. M. Liu, “Dynamics of a degenerate Fermi gas in a one-dimensional optical lattice coupled to a cavity,” Phys. Rev. A 83, 043606 (2011).
[CrossRef]

Q. Sun, X.-H. Hu, W. M. Liu, X. C. Xie, and A.-C. Ji, “Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas,” Phys. Rev. A 84, 023822 (2011).
[CrossRef]

Hull, G. F.

E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev. 13, 307 (1901).

Hunger, D.

D. Hunger, S. Camerer, T. W. Hänsch, D. König, J. P. Kotthaus, J. Reichel, and P. Treutlein, “Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator,” Phys. Rev. Lett. 104, 143002 (2010).
[CrossRef] [PubMed]

P. Treutlein, D. Hunger, S. Camerer, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip,” Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

Ian, H.

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[CrossRef]

Innerhofer, E.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

Irish, E. K.

E. K. Irish, “Generalized rotating-wave approximation for arbitrarily large coupling,” Phys. Rev. Lett. 99, 173601 (2007).
[CrossRef] [PubMed]

Jacobs, K.

S. Bose, K. Jacobs, and P. L. Knight, “Preparation of nonclassical states in cavities with a moving mirror,” Phys. Rev. A 56, 4175 (1997).
[CrossRef]

Ji, A.-C.

Q. Sun, X.-H. Hu, A.-C. Ji, and W. M. Liu, “Dynamics of a degenerate Fermi gas in a one-dimensional optical lattice coupled to a cavity,” Phys. Rev. A 83, 043606 (2011).
[CrossRef]

Q. Sun, X.-H. Hu, W. M. Liu, X. C. Xie, and A.-C. Ji, “Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas,” Phys. Rev. A 84, 023822 (2011).
[CrossRef]

Jia, S.

Jing, J.

L. Zhou, Y. Han, J. Jing, and W. Zhang, “Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence,” Phys. Rev. A 83, 052117 (2011).
[CrossRef]

Khalili, F.

F. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H. Yang, and Y. Chen, “Preparing a mechanical oscillator in non-Gaussian quantum states,” Phys. Rev. Lett. 105, 070403 (2010).
[CrossRef] [PubMed]

Kimble, H. J.

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[CrossRef] [PubMed]

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007).
[CrossRef] [PubMed]

Knight, P. L.

S. Bose, K. Jacobs, and P. L. Knight, “Preparation of nonclassical states in cavities with a moving mirror,” Phys. Rev. A 56, 4175 (1997).
[CrossRef]

König, D.

D. Hunger, S. Camerer, T. W. Hänsch, D. König, J. P. Kotthaus, J. Reichel, and P. Treutlein, “Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator,” Phys. Rev. Lett. 104, 143002 (2010).
[CrossRef] [PubMed]

Kotthaus, J. P.

D. Hunger, S. Camerer, T. W. Hänsch, D. König, J. P. Kotthaus, J. Reichel, and P. Treutlein, “Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator,” Phys. Rev. Lett. 104, 143002 (2010).
[CrossRef] [PubMed]

Krause, A.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Lambert, N.

N. Lambert, C. Emary, and T. Brandes, “Entanglement and entropy in a spin-boson quantum phase transition,” Phys. Rev. A 71, 053804 (2005).
[CrossRef]

Langer, G.

S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Lebedew, P.

P. Lebedew, “Experimental examination of light pressure,” Ann. Phys. (Leipzig) 6, 433–458 (1901).

Lehnert, K. W.

D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[CrossRef]

Li, D.

D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[CrossRef]

Li, J.

G. Chen, J. Li, and J.-Q. Liang, “Critical property of the geometric phase in the Dicke model,” Phys. Rev. A 74, 054101 (2006).
[CrossRef]

Liang, J.-Q.

Lieb, E. H.

K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model,” Annals Phys.(N.Y.) 76, 360–404 (1973).
[CrossRef]

Liu, W. M.

Q. Sun, X.-H. Hu, A.-C. Ji, and W. M. Liu, “Dynamics of a degenerate Fermi gas in a one-dimensional optical lattice coupled to a cavity,” Phys. Rev. A 83, 043606 (2011).
[CrossRef]

Q. Sun, X.-H. Hu, W. M. Liu, X. C. Xie, and A.-C. Ji, “Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas,” Phys. Rev. A 84, 023822 (2011).
[CrossRef]

Liu, Y. X.

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[CrossRef]

Lucero, E.

M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008).
[CrossRef] [PubMed]

Ludwig, M.

M. Ludwig, K. Hammerer, and F. Marquardt, “Entanglement of mechanical oscillators coupled to a nonequilibrium environment,” Phys. Rev. A 82, 012333 (2010).
[CrossRef]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[CrossRef] [PubMed]

Mancini, S.

S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[CrossRef] [PubMed]

Marquardt, F.

M. Ludwig, K. Hammerer, and F. Marquardt, “Entanglement of mechanical oscillators coupled to a nonequilibrium environment,” Phys. Rev. A 82, 012333 (2010).
[CrossRef]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[CrossRef] [PubMed]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

Marshall, W.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

Martinis, J. M.

M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008).
[CrossRef] [PubMed]

Mavalvala, N.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

T. Corbitt and N. Mavalvala, “Quantum noise in gravitational-wave interferometers,” J. Opt. B: Quantum Semiclass. Opt 6, S675–S683 (2004).
[CrossRef]

Mayer Alegre, T. P.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Meystre, P.

S. K. Steinke, S. Singh, M. E. Tasgin, P. Meystre, K. C. Schwab, and M. Vengalattore, “Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator,” Phys. Rev. A 84, 023841 (2011).
[CrossRef]

Miao, H.

F. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H. Yang, and Y. Chen, “Preparing a mechanical oscillator in non-Gaussian quantum states,” Phys. Rev. Lett. 105, 070403 (2010).
[CrossRef] [PubMed]

Müller-Ebhardt, H.

F. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H. Yang, and Y. Chen, “Preparing a mechanical oscillator in non-Gaussian quantum states,” Phys. Rev. Lett. 105, 070403 (2010).
[CrossRef] [PubMed]

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

Neeley, M.

M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008).
[CrossRef] [PubMed]

Nichols, E. F.

E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev. 13, 307 (1901).

Nooshi, N.

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007).
[CrossRef] [PubMed]

Nori, F.

S. Ashhab and F. Nori, “Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states,” Phys. Rev. A 81, 042311 (2010).
[CrossRef]

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[CrossRef]

Nunnenkamp, A.

K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett. 107, 123601 (2011).
[CrossRef] [PubMed]

OConnell, A. D.

M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008).
[CrossRef] [PubMed]

Ottaway, D.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

Painter, O.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Palma, G. M.

G. D. Chiara, M. Paternostro, and G. M. Palma, “Entanglement detection in hybrid optomechanical systems,” Phys. Rev. A 83, 052324–052329 (2011).
[CrossRef]

Parkins, A. S.

F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
[CrossRef]

Paternostro, M.

G. D. Chiara, M. Paternostro, and G. M. Palma, “Entanglement detection in hybrid optomechanical systems,” Phys. Rev. A 83, 052324–052329 (2011).
[CrossRef]

S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Penrose, R.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

Pinard, M.

P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 833174 (1999).
[CrossRef]

Polzik, E. S.

K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles,” Phys. Rev. Lett. 102, 020501 (2009).
[CrossRef] [PubMed]

Primakoff, H.

T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet,” Phys. Rev. 58, 1098–1113 (1940).
[CrossRef]

Rehbein, H.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

Reichel, J.

D. Hunger, S. Camerer, T. W. Hänsch, D. König, J. P. Kotthaus, J. Reichel, and P. Treutlein, “Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator,” Phys. Rev. Lett. 104, 143002 (2010).
[CrossRef] [PubMed]

P. Treutlein, D. Hunger, S. Camerer, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip,” Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

Ritter, S.

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[CrossRef] [PubMed]

Roukes, M. L.

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Physics Today 58, 36–42 (2005).
[CrossRef]

Safavi-Naeini, A. H.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Santos, J. P.

J. P. Santos, F. L. Semião, and K. Furuya, “Probing the quantum phase transition in the Dicke model through mechanical vibrations,” Phys. Rev. A 82, 063801 (2010).
[CrossRef]

Schwab, K. C.

S. K. Steinke, S. Singh, M. E. Tasgin, P. Meystre, K. C. Schwab, and M. Vengalattore, “Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator,” Phys. Rev. A 84, 023841 (2011).
[CrossRef]

S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Physics Today 58, 36–42 (2005).
[CrossRef]

Semião, F. L.

J. P. Santos, F. L. Semião, and K. Furuya, “Probing the quantum phase transition in the Dicke model through mechanical vibrations,” Phys. Rev. A 82, 063801 (2010).
[CrossRef]

Sigg, D.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

Simmonds, R. W.

D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[CrossRef]

Simon, C.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

Singh, S.

S. K. Steinke, S. Singh, M. E. Tasgin, P. Meystre, K. C. Schwab, and M. Vengalattore, “Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator,” Phys. Rev. A 84, 023841 (2011).
[CrossRef]

Sirois, A. J.

D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[CrossRef]

Steinke, S. K.

S. K. Steinke, S. Singh, M. E. Tasgin, P. Meystre, K. C. Schwab, and M. Vengalattore, “Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator,” Phys. Rev. A 84, 023841 (2011).
[CrossRef]

Sun, C. P.

Y. Chang and C. P. Sun, “Analog of the electromagnetically-induced-transparency effect for two nanomechanical or micromechanical resonators coupled to a spin ensemble,” Phys. Rev. A 83, 053834 (2011).
[CrossRef]

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[CrossRef]

Sun, Q.

Q. Sun, X.-H. Hu, W. M. Liu, X. C. Xie, and A.-C. Ji, “Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas,” Phys. Rev. A 84, 023822 (2011).
[CrossRef]

Q. Sun, X.-H. Hu, A.-C. Ji, and W. M. Liu, “Dynamics of a degenerate Fermi gas in a one-dimensional optical lattice coupled to a cavity,” Phys. Rev. A 83, 043606 (2011).
[CrossRef]

Tasgin, M. E.

S. K. Steinke, S. Singh, M. E. Tasgin, P. Meystre, K. C. Schwab, and M. Vengalattore, “Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator,” Phys. Rev. A 84, 023841 (2011).
[CrossRef]

Teufe, D.

D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[CrossRef]

Tian, L.

L. Tian and P. Zoller, “Coupled ion-nanomechanical systems,” Phys. Rev. Lett. 93, 266403 (2004).
[CrossRef]

Tombesi, P.

C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A 77, 050307 (2008).
[CrossRef]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[CrossRef] [PubMed]

Treutlein, P.

D. Hunger, S. Camerer, T. W. Hänsch, D. König, J. P. Kotthaus, J. Reichel, and P. Treutlein, “Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator,” Phys. Rev. Lett. 104, 143002 (2010).
[CrossRef] [PubMed]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[CrossRef] [PubMed]

P. Treutlein, D. Hunger, S. Camerer, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip,” Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

Vedral, V.

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

Vengalattore, M.

S. K. Steinke, S. Singh, M. E. Tasgin, P. Meystre, K. C. Schwab, and M. Vengalattore, “Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator,” Phys. Rev. A 84, 023841 (2011).
[CrossRef]

Vitali, D.

C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A 77, 050307 (2008).
[CrossRef]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[CrossRef] [PubMed]

Wallquist, M.

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[CrossRef] [PubMed]

Wang, H.

M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008).
[CrossRef] [PubMed]

Wang, Y. K.

Y. K. Wang and F. T. Hioes, “Phase transition in the Dicke model of superradiance,” Phys. Rev. A 7, 831–836 (1973).
[CrossRef]

Weig, E. M.

M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008).
[CrossRef] [PubMed]

Whitcomb, S.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

Whittaker, J. D.

D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[CrossRef]

Wilson-Rae, I.

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007).
[CrossRef] [PubMed]

Wipf, C.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

Xiao, L.

Xie, X. C.

Q. Sun, X.-H. Hu, W. M. Liu, X. C. Xie, and A.-C. Ji, “Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas,” Phys. Rev. A 84, 023822 (2011).
[CrossRef]

Yang, H.

F. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H. Yang, and Y. Chen, “Preparing a mechanical oscillator in non-Gaussian quantum states,” Phys. Rev. Lett. 105, 070403 (2010).
[CrossRef] [PubMed]

Ye, J.

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[CrossRef] [PubMed]

Zeilinger, A.

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

Zhang, W.

L. Zhou, Y. Han, J. Jing, and W. Zhang, “Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence,” Phys. Rev. A 83, 052117 (2011).
[CrossRef]

Zhang, Y.

Zhou, L.

L. Zhou, Y. Han, J. Jing, and W. Zhang, “Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence,” Phys. Rev. A 83, 052117 (2011).
[CrossRef]

Zoller, P.

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[CrossRef] [PubMed]

K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles,” Phys. Rev. Lett. 102, 020501 (2009).
[CrossRef] [PubMed]

L. Tian and P. Zoller, “Coupled ion-nanomechanical systems,” Phys. Rev. Lett. 93, 266403 (2004).
[CrossRef]

Zwerger, W.

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007).
[CrossRef] [PubMed]

Ann. Phys. (Leipzig) (1)

P. Lebedew, “Experimental examination of light pressure,” Ann. Phys. (Leipzig) 6, 433–458 (1901).

Annals Phys.(N.Y.) (1)

K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model,” Annals Phys.(N.Y.) 76, 360–404 (1973).
[CrossRef]

J. Opt. B: Quantum Semiclass. Opt (1)

T. Corbitt and N. Mavalvala, “Quantum noise in gravitational-wave interferometers,” J. Opt. B: Quantum Semiclass. Opt 6, S675–S683 (2004).
[CrossRef]

Nature (4)

S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[CrossRef] [PubMed]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

D. Teufe, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[CrossRef]

M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. OConnell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of Fock states in a superconducting quantum circuit,” Nature 454, 310–314 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. (3)

E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev. 13, 307 (1901).

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[CrossRef]

T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet,” Phys. Rev. 58, 1098–1113 (1940).
[CrossRef]

Phys. Rev. A (18)

J. P. Santos, F. L. Semião, and K. Furuya, “Probing the quantum phase transition in the Dicke model through mechanical vibrations,” Phys. Rev. A 82, 063801 (2010).
[CrossRef]

N. Lambert, C. Emary, and T. Brandes, “Entanglement and entropy in a spin-boson quantum phase transition,” Phys. Rev. A 71, 053804 (2005).
[CrossRef]

G. D. Chiara, M. Paternostro, and G. M. Palma, “Entanglement detection in hybrid optomechanical systems,” Phys. Rev. A 83, 052324–052329 (2011).
[CrossRef]

G. Chen, J. Li, and J.-Q. Liang, “Critical property of the geometric phase in the Dicke model,” Phys. Rev. A 74, 054101 (2006).
[CrossRef]

Q. Sun, X.-H. Hu, W. M. Liu, X. C. Xie, and A.-C. Ji, “Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas,” Phys. Rev. A 84, 023822 (2011).
[CrossRef]

Q. Sun, X.-H. Hu, A.-C. Ji, and W. M. Liu, “Dynamics of a degenerate Fermi gas in a one-dimensional optical lattice coupled to a cavity,” Phys. Rev. A 83, 043606 (2011).
[CrossRef]

F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007).
[CrossRef]

S. Ashhab and F. Nori, “Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states,” Phys. Rev. A 81, 042311 (2010).
[CrossRef]

C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A 77, 050307 (2008).
[CrossRef]

L. Zhou, Y. Han, J. Jing, and W. Zhang, “Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence,” Phys. Rev. A 83, 052117 (2011).
[CrossRef]

M. Ludwig, K. Hammerer, and F. Marquardt, “Entanglement of mechanical oscillators coupled to a nonequilibrium environment,” Phys. Rev. A 82, 012333 (2010).
[CrossRef]

S. K. Steinke, S. Singh, M. E. Tasgin, P. Meystre, K. C. Schwab, and M. Vengalattore, “Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator,” Phys. Rev. A 84, 023841 (2011).
[CrossRef]

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[CrossRef]

Y. Chang and C. P. Sun, “Analog of the electromagnetically-induced-transparency effect for two nanomechanical or micromechanical resonators coupled to a spin ensemble,” Phys. Rev. A 83, 053834 (2011).
[CrossRef]

Y. K. Wang and F. T. Hioes, “Phase transition in the Dicke model of superradiance,” Phys. Rev. A 7, 831–836 (1973).
[CrossRef]

F. T. Hioes, “Phase transitions in some generalized Dicke models of superradiance,” Phys. Rev. A 8, 1440–1445 (1973).
[CrossRef]

A. B. Bhattacherjee, “Cavity quantum optomechanics of ultracold atoms in an optical lattice: normal-mode splitting,” Phys. Rev. A 80, 043607 (2009).
[CrossRef]

S. Bose, K. Jacobs, and P. L. Knight, “Preparation of nonclassical states in cavities with a moving mirror,” Phys. Rev. A 56, 4175 (1997).
[CrossRef]

Phys. Rev. E (1)

C. Emary and T. Brandes, “Chaos and the quantum phase transition in the Dicke model,” Phys. Rev. E 67, 066203 (2003).
[CrossRef]

Phys. Rev. Lett. (16)

E. K. Irish, “Generalized rotating-wave approximation for arbitrarily large coupling,” Phys. Rev. Lett. 99, 173601 (2007).
[CrossRef] [PubMed]

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

F. Khalili, S. Danilishin, H. Miao, H. Müller-Ebhardt, H. Yang, and Y. Chen, “Preparing a mechanical oscillator in non-Gaussian quantum states,” Phys. Rev. Lett. 105, 070403 (2010).
[CrossRef] [PubMed]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

D. Hunger, S. Camerer, T. W. Hänsch, D. König, J. P. Kotthaus, J. Reichel, and P. Treutlein, “Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator,” Phys. Rev. Lett. 104, 143002 (2010).
[CrossRef] [PubMed]

C. Emary and T. Brandes, “Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model,” Phys. Rev. Lett. 90, 044101 (2003).
[CrossRef] [PubMed]

K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles,” Phys. Rev. Lett. 102, 020501 (2009).
[CrossRef] [PubMed]

K. Børkje, A. Nunnenkamp, and S. M. Girvin, “Proposal for entangling remote micromechanical oscillators via optical measurements,” Phys. Rev. Lett. 107, 123601 (2011).
[CrossRef] [PubMed]

S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[CrossRef] [PubMed]

L. Tian and P. Zoller, “Coupled ion-nanomechanical systems,” Phys. Rev. Lett. 93, 266403 (2004).
[CrossRef]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[CrossRef] [PubMed]

P. Treutlein, D. Hunger, S. Camerer, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip,” Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 833174 (1999).
[CrossRef]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007).
[CrossRef] [PubMed]

Physics Today (1)

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Physics Today 58, 36–42 (2005).
[CrossRef]

Science (2)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A collective of N two-level atoms interact with a single-mode quantized cavity field. The movable cavity mirror is in a harmonic motion due to a linear restoring force from the spring.

Fig. 2
Fig. 2

The expectation values of the number of photons and the number of atoms in excited states per atom as a function of atom-field coupling constant λ with ω = ω0 = 2λc.

Fig. 3
Fig. 3

The movable mirror’s steady position qs as a function of atom-field coupling constant λ for a given number of atoms. qs is in unit of xzp/L. The solid line (red), dashed line (blue) and dotted line (black) represents N =5, 10 and 20 respectively. The system parameters are ω = ω0 = 10ωm and λc = 1.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

H D M = ω a a + ω 0 J z + λ N ( J + + J ) ( a + a )
[ J + , J ] = 2 J z , [ J z , J ± ] = ± J ±
J u = 1 2 i = 1 N σ u ( i ) ( u = x , y , z ) J ± = 1 2 i = 1 N ( σ x ( i ) ± i σ y ( i ) )
a | α = α | α
| θ , φ = R θ , φ | j , j
J n | θ , φ = j | θ , φ
E ± ( α ) = ω ( μ 2 + v 2 ) ± N 2 ω 0 2 + ( 4 λ μ N ) 2
E ( α ) μ = 0 , E ( α ) v = 0.
α = { 0 , λ < λ c N ω 0 2 ( λ 4 / λ c 4 1 ) 16 λ 2 , λ > λ c
J z = θ , φ | R J z R | θ , φ = { N 2 , λ < λ c N λ 2 2 λ c 2 , λ > λ c
H O P M = ω m c c g a a ( c + c )
H O P M = P 2 2 M + M ω m 2 2 Q 2 ω L a a Q
q = M ω m 2 Q p = 1 2 M ω m P
H O P M = ω m 2 ( p 2 + q 2 ) 2 g a a q
q ˙ = ω m p Γ 2 q + Γ q in p ˙ = ω m q + 2 g a a Γ 2 p + Γ p in
q ˙ = ω m p Γ 2 q p ˙ = ω m q + 2 g | α | 2 Γ 2 p
q s = 2 g | α | 2 / ω m 1 + Γ 2 4 ω m 2 p s = Γ q s 2 ω m = g | α | 2 Γ / ω m 2 1 + Γ 2 4 ω m 2
δ q ( t ) = q ( t ) q s δ p ( t ) = p ( t ) p s
d d t ( δ q δ p ) = ( Γ 2 ω m ω m Γ 2 ) ( δ q δ p )
q ( t ) = e Γ 2 t [ cos ω m t 2 g | α | 2 Γ 2 4 + ω m 2 cos ( ω m t ϕ ) ] + 2 g | α | 2 / ω m 1 + Γ 2 4 ω m 2 = e Γ 2 t [ cos ω m t 2 g | α | 2 / ω m 1 Q m 2 + 1 cos ( ω m t tan ( 1 Q m ) ) ] + 2 g | α | 2 / ω m 1 Q m 2 + 1
q ( t ) = ( 1 2 g | α | 2 ω m ) e Γ 2 t cos ω m t + 2 g | α | 2 ω m
q s = 2 g | α | 2 ω m = N ω ω 0 2 x z p 8 ω m λ 2 L ( λ 4 λ c 4 1 )

Metrics