Abstract

We demonstrate 7-core fiber transmission of 10 x 96-Gb/s PDM-16QAM signals over 1000-km using distributed Raman amplification (DRA). DRA gain of 9-12 dB and equivalent noise figure of less than 1 dB are achieved in all cores. We also prove the feasibility of high power multi-core fiber transmission with per fiber power of 6.5 W.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, “New Generation optical infrastructure technologies: EXAT initiative towards 2020 and beyond,” in 14th OptoElectronics and Communications Conference, 13-17 July (2009).
  2. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA4.
  3. J. Sakaguchi, Y. Awaji, N. Wada, T. Hayashi, T. Nagashima, T. Kobayashi, and M. Watanabe, “Propagation Characteristics of Seven-core Fiber for Spatial and Wavelength Division Multiplexed 10-Gbit/s Channels,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ2.
  4. B. Zhu, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s (7x160x107Gb/s) space-division multiplexed DWDM transmission over a 76.8-km multicore Fiber,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.5.B.5.
  5. S. Chandrasekhar, A. Gnauck, X. Liu, P. Winzer, Y. Pan, E. C. Burrows, B. Zhu, T. Taunay, M. Fishteyn, M. Yan, J. M. Fini, E. Monberg, and F. Dimarcello, “WDM/SDM Transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-Core Fiber with a per-Fiber Net Aggregate Spectral-Efficiency Distance Product of 40,320 km.b/s/Hz,” n 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.4.
  6. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, and K. Imamura, H. Inaba K. Mukasa, R. Sugisaki T. Kobayashi and M. Watanabe, “19-core fiber transmission of 19 x 100 x 172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.1.
  7. X. Liu1, S. Chandrasekhar, X. Chen, P. J. Winzer, Y. Pan1, B. Zhu, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E.M. Monberg, and F.V. Dimarcelloand, “1.12-Tb/s 32-QAM-OFDM Superchannel with 8.6-b/s/Hz Intrachannel Spectral Efficiency and Space-Division Multiplexing with 60-b/s/Hz Aggregate Spectral Efficiency,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.B.1.
  8. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A Large Effective Area Multi-Core Fibre with an Optimised Cladding Thickness,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Mo.1.LeCervin.2.
  9. K. Imamura, K. Mukasa, and R. Sugizaki, “Trench Assisted Multi-Core Fiber with Large Aeff over 100 μm2 and Low Attenuation Loss,” in 37th European Conference and Exposition on Optical Communications, 18-22 Sept., 2011.
  10. T. Hayashi, T. Sasaki, and E. Sasaoka, “Microbending-induced crosstalk increase in heterogeneous multi-core fiber,”, ” in 37th European Conference and Exposition on Optical Communications, 18-22 Sept., 2011.
  11. E. Ip, N. Bai, Y. Huang, E. Mateo, F. Yaman, M. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. M. Chung, A. Lau, H. Tam, C. Lu, Y. Luo, G. Peng, and G. Li, “88×3×112-Gb/s WDM Transmission over 50 km of Three- Mode Fiber with Inline Few-Mode Fiber Amplifier,” in 37th European Conference and Exposition on Optical Communications, 18-22 Sept., 2011.
  12. S. Randel, R. Ryf, A. H. Gnauck, M. A. Mestre, C. Schmidt, R. J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, Y. Sunm X. Jiang, and R. Lingle, Jr., “Mode multiplexed 6 x 20-GBd QPSK Transmission over 1200-km DGD-compensated Few-mode Fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.5).
  13. P. Winzer, A. H. Gnauck, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “Penalties from In-Band Crosstalk for Advanced Optical Modulation Formats,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.5.B.7.
  14. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Trench-Assisted Multi-Core Fiber,” OFCNFOEC2011, OWJ4 (2011).
  15. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction,” IEICE TRANSACTIONS on CommunicationsE94-B(2), 409–416 (2011).
    [CrossRef]
  16. K.Yoshida, “Fusion Splicer for Specialty Optical Fiber with Advanced Functions,” (submitted) Fujikura Technical Review, No. 41 (2012).
  17. T. Kobayashi, A. Sano, H. Masuda, K. Ishihara, E. Yoshida, Y. Miyamoto, H. Yamazaki, and T. Yamada, “160-Gb/s polarization-multiplexed 16-QAM long-haul transmission over 3,123 km using digital coherent receiver with digital PLL based frequency offset compensator,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuD1.
  18. F. Chang, K. Onohara, and T. Mizuochi, “Forward Error Correction for 100G Transport Nwtworks,” IEEE Commun. Mag. (March): 548–555 (2010).
  19. H. Takara, H. Masuda, H. Kanbara, Y. Abe, Y. Miyamoto, R. Nagase, T. Morioka, S. Matsuoka, M. Shimizu, and K. Hagimoto, “Evaluation of fiber fuse characteristics of hole-assisted fiber for high power optical transmission systems,” in 35th European Conference on Optical Communications, 20-24 Sept. 2009.

2011

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Trench-Assisted Multi-Core Fiber,” OFCNFOEC2011, OWJ4 (2011).

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction,” IEICE TRANSACTIONS on CommunicationsE94-B(2), 409–416 (2011).
[CrossRef]

2010

F. Chang, K. Onohara, and T. Mizuochi, “Forward Error Correction for 100G Transport Nwtworks,” IEEE Commun. Mag. (March): 548–555 (2010).

Arakawa, Y.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction,” IEICE TRANSACTIONS on CommunicationsE94-B(2), 409–416 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Trench-Assisted Multi-Core Fiber,” OFCNFOEC2011, OWJ4 (2011).

Chang, F.

F. Chang, K. Onohara, and T. Mizuochi, “Forward Error Correction for 100G Transport Nwtworks,” IEEE Commun. Mag. (March): 548–555 (2010).

Guan, N.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction,” IEICE TRANSACTIONS on CommunicationsE94-B(2), 409–416 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Trench-Assisted Multi-Core Fiber,” OFCNFOEC2011, OWJ4 (2011).

Koshiba, M.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Trench-Assisted Multi-Core Fiber,” OFCNFOEC2011, OWJ4 (2011).

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction,” IEICE TRANSACTIONS on CommunicationsE94-B(2), 409–416 (2011).
[CrossRef]

Matsuo, S.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction,” IEICE TRANSACTIONS on CommunicationsE94-B(2), 409–416 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Trench-Assisted Multi-Core Fiber,” OFCNFOEC2011, OWJ4 (2011).

Mizuochi, T.

F. Chang, K. Onohara, and T. Mizuochi, “Forward Error Correction for 100G Transport Nwtworks,” IEEE Commun. Mag. (March): 548–555 (2010).

Onohara, K.

F. Chang, K. Onohara, and T. Mizuochi, “Forward Error Correction for 100G Transport Nwtworks,” IEEE Commun. Mag. (March): 548–555 (2010).

Saitoh, K.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction,” IEICE TRANSACTIONS on CommunicationsE94-B(2), 409–416 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Trench-Assisted Multi-Core Fiber,” OFCNFOEC2011, OWJ4 (2011).

Takenaga, K.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Trench-Assisted Multi-Core Fiber,” OFCNFOEC2011, OWJ4 (2011).

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction,” IEICE TRANSACTIONS on CommunicationsE94-B(2), 409–416 (2011).
[CrossRef]

Tanigawa, S.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction,” IEICE TRANSACTIONS on CommunicationsE94-B(2), 409–416 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Trench-Assisted Multi-Core Fiber,” OFCNFOEC2011, OWJ4 (2011).

IEEE Commun. Mag.

F. Chang, K. Onohara, and T. Mizuochi, “Forward Error Correction for 100G Transport Nwtworks,” IEEE Commun. Mag. (March): 548–555 (2010).

IEICE TRANSACTIONS on Communications

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction,” IEICE TRANSACTIONS on CommunicationsE94-B(2), 409–416 (2011).
[CrossRef]

OFC

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Trench-Assisted Multi-Core Fiber,” OFCNFOEC2011, OWJ4 (2011).

Other

K.Yoshida, “Fusion Splicer for Specialty Optical Fiber with Advanced Functions,” (submitted) Fujikura Technical Review, No. 41 (2012).

T. Kobayashi, A. Sano, H. Masuda, K. Ishihara, E. Yoshida, Y. Miyamoto, H. Yamazaki, and T. Yamada, “160-Gb/s polarization-multiplexed 16-QAM long-haul transmission over 3,123 km using digital coherent receiver with digital PLL based frequency offset compensator,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuD1.

H. Takara, H. Masuda, H. Kanbara, Y. Abe, Y. Miyamoto, R. Nagase, T. Morioka, S. Matsuoka, M. Shimizu, and K. Hagimoto, “Evaluation of fiber fuse characteristics of hole-assisted fiber for high power optical transmission systems,” in 35th European Conference on Optical Communications, 20-24 Sept. 2009.

T. Morioka, “New Generation optical infrastructure technologies: EXAT initiative towards 2020 and beyond,” in 14th OptoElectronics and Communications Conference, 13-17 July (2009).

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA4.

J. Sakaguchi, Y. Awaji, N. Wada, T. Hayashi, T. Nagashima, T. Kobayashi, and M. Watanabe, “Propagation Characteristics of Seven-core Fiber for Spatial and Wavelength Division Multiplexed 10-Gbit/s Channels,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ2.

B. Zhu, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s (7x160x107Gb/s) space-division multiplexed DWDM transmission over a 76.8-km multicore Fiber,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.5.B.5.

S. Chandrasekhar, A. Gnauck, X. Liu, P. Winzer, Y. Pan, E. C. Burrows, B. Zhu, T. Taunay, M. Fishteyn, M. Yan, J. M. Fini, E. Monberg, and F. Dimarcello, “WDM/SDM Transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-Core Fiber with a per-Fiber Net Aggregate Spectral-Efficiency Distance Product of 40,320 km.b/s/Hz,” n 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.4.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, and K. Imamura, H. Inaba K. Mukasa, R. Sugisaki T. Kobayashi and M. Watanabe, “19-core fiber transmission of 19 x 100 x 172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.1.

X. Liu1, S. Chandrasekhar, X. Chen, P. J. Winzer, Y. Pan1, B. Zhu, T. F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E.M. Monberg, and F.V. Dimarcelloand, “1.12-Tb/s 32-QAM-OFDM Superchannel with 8.6-b/s/Hz Intrachannel Spectral Efficiency and Space-Division Multiplexing with 60-b/s/Hz Aggregate Spectral Efficiency,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.B.1.

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A Large Effective Area Multi-Core Fibre with an Optimised Cladding Thickness,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Mo.1.LeCervin.2.

K. Imamura, K. Mukasa, and R. Sugizaki, “Trench Assisted Multi-Core Fiber with Large Aeff over 100 μm2 and Low Attenuation Loss,” in 37th European Conference and Exposition on Optical Communications, 18-22 Sept., 2011.

T. Hayashi, T. Sasaki, and E. Sasaoka, “Microbending-induced crosstalk increase in heterogeneous multi-core fiber,”, ” in 37th European Conference and Exposition on Optical Communications, 18-22 Sept., 2011.

E. Ip, N. Bai, Y. Huang, E. Mateo, F. Yaman, M. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. M. Chung, A. Lau, H. Tam, C. Lu, Y. Luo, G. Peng, and G. Li, “88×3×112-Gb/s WDM Transmission over 50 km of Three- Mode Fiber with Inline Few-Mode Fiber Amplifier,” in 37th European Conference and Exposition on Optical Communications, 18-22 Sept., 2011.

S. Randel, R. Ryf, A. H. Gnauck, M. A. Mestre, C. Schmidt, R. J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, Y. Sunm X. Jiang, and R. Lingle, Jr., “Mode multiplexed 6 x 20-GBd QPSK Transmission over 1200-km DGD-compensated Few-mode Fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.5).

P. Winzer, A. H. Gnauck, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “Penalties from In-Band Crosstalk for Advanced Optical Modulation Formats,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.5.B.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Configuration of a distributed Raman amplifier including the MCF, the fan-in/fan-out devices, and the Raman pump source.

Fig. 2
Fig. 2

Distributed Raman amplification characteristics.

Fig. 3
Fig. 3

Experimental setup. AOM: acoustic optical modulator, VOA: variable optical attenuator, OBPF: optical bandpass filter, MCF: multi-core fiber, EDFA: Er-doped fiber amplifier, RPS: Raman pump source.

Fig. 4
Fig. 4

Optical spectra (a) before transmission and (b) after 1050-km transmission for core 0.

Fig. 5
Fig. 5

Q-factor as a function of fiber input power.

Fig. 6
Fig. 6

Q-factor vs. signal launched core number.

Fig. 7
Fig. 7

The relationship between Q-factor and transmission distance of the channel at 193.25 THz.

Fig. 8
Fig. 8

Measured Q-factor performance after 1050-km transmission

Tables (1)

Tables Icon

Table 1 Loss characteristic of each core of the MCF with FI/FO

Metrics