Abstract

We present that two distinct optical properties of light, the spin angular momentum (SAM) and the orbital angular momentum (OAM), can be coupled in the plasmonic vortex. If a plasmonic vortex lens (PVL) is illuminated by the helical vector beam (HVB) with the SAM and OAM, then those distinct angular momenta contribute to the generation of the plasmonic vortex together. The analytical model reveals that the total topological charge of the generated plasmonic vortex is given by a linear summation of those of the SAM and OAM, as well as the geometric charge of the PVL. The generation of the plasmonic vortex and the manipulation of the fractional topological charge are also presented.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  4. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
    [CrossRef] [PubMed]
  5. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
    [CrossRef]
  6. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [CrossRef] [PubMed]
  7. H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5(11), 2144–2148 (2005).
    [CrossRef] [PubMed]
  8. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
    [CrossRef] [PubMed]
  9. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
    [CrossRef] [PubMed]
  10. H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008).
    [CrossRef] [PubMed]
  11. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [CrossRef] [PubMed]
  12. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
    [CrossRef] [PubMed]
  13. B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
    [CrossRef]
  14. K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
    [CrossRef] [PubMed]
  15. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
    [CrossRef] [PubMed]
  16. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
    [CrossRef] [PubMed]
  17. H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
    [CrossRef] [PubMed]
  18. E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “Polarization control of non-diffractive helical optical beams through subwavelength metallic apertures,” New J. Phys. 12(2), 023027 (2010).
    [CrossRef]
  19. V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt. 13(6), 064002 (2011).
    [CrossRef]
  20. P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
    [CrossRef]
  21. P. S. Tan, G. H. Yuan, Q. Wang, N. Zhang, D. H. Zhang, and X.-C. Yuan, “Phase singularity of surface plasmon polaritons generated by optical vortices,” Opt. Lett. 36(16), 3287–3289 (2011).
    [CrossRef] [PubMed]
  22. S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express 19(22), 22305–22315 (2011).
    [CrossRef] [PubMed]
  23. J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett. 11(5), 2008–2016 (2011).
    [CrossRef] [PubMed]
  24. S.-Y. Lee, J. Park, H. Kim, S.-W. Cho, M. Kang, and B. Lee, “Controlling the state of surface plasmon vortex by changing the topoligical charge and polarization state,” Proc. SPIE 7757, 7757G (2010).
  25. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley Interscience, 2007).
  26. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
    [CrossRef] [PubMed]
  27. H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
    [CrossRef] [PubMed]
  28. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
    [CrossRef] [PubMed]
  29. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004).
    [CrossRef]
  30. S. H. Tao, W. M. Lee, and X.-C. Yuan, “Dynamic optical manipulation with a higher-order fractional bessel beam generated from a spatial light modulator,” Opt. Lett. 28(20), 1867–1869 (2003).
    [CrossRef] [PubMed]
  31. G. M. Lerman, L. Stern, and U. Levy, “Generation and tight focusing of hybridly polarized vector beams,” Opt. Express 18(26), 27650–27657 (2010).
    [CrossRef] [PubMed]

2011

P. S. Tan, G. H. Yuan, Q. Wang, N. Zhang, D. H. Zhang, and X.-C. Yuan, “Phase singularity of surface plasmon polaritons generated by optical vortices,” Opt. Lett. 36(16), 3287–3289 (2011).
[CrossRef] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express 19(22), 22305–22315 (2011).
[CrossRef] [PubMed]

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett. 11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt. 13(6), 064002 (2011).
[CrossRef]

2010

S.-Y. Lee, J. Park, H. Kim, S.-W. Cho, M. Kang, and B. Lee, “Controlling the state of surface plasmon vortex by changing the topoligical charge and polarization state,” Proc. SPIE 7757, 7757G (2010).

G. M. Lerman, L. Stern, and U. Levy, “Generation and tight focusing of hybridly polarized vector beams,” Opt. Express 18(26), 27650–27657 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[CrossRef] [PubMed]

E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “Polarization control of non-diffractive helical optical beams through subwavelength metallic apertures,” New J. Phys. 12(2), 023027 (2010).
[CrossRef]

2009

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
[CrossRef] [PubMed]

2008

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[CrossRef] [PubMed]

H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008).
[CrossRef] [PubMed]

2007

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
[CrossRef] [PubMed]

2005

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

2004

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004).
[CrossRef]

2003

S. H. Tao, W. M. Lee, and X.-C. Yuan, “Dynamic optical manipulation with a higher-order fractional bessel beam generated from a spatial light modulator,” Opt. Lett. 28(20), 1867–1869 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

2002

2001

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Al-Awfi, S.

V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt. 13(6), 064002 (2011).
[CrossRef]

Andrews, D. L.

V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt. 13(6), 064002 (2011).
[CrossRef]

Babiker, M.

V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt. 13(6), 064002 (2011).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Biener, G.

Bliokh, K. Y.

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[CrossRef] [PubMed]

Bomzon, Z.

Boriskina, S. V.

Bozhevolnyi, S. I.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Bretner, I.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Burge, R. E.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cao, H.

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett. 11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

Chen, W.

Cho, S.-W.

S.-Y. Lee, J. Park, H. Kim, S.-W. Cho, M. Kang, and B. Lee, “Controlling the state of surface plasmon vortex by changing the topoligical charge and polarization state,” Proc. SPIE 7757, 7757G (2010).

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[CrossRef] [PubMed]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Dal Negro, L.

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett. 11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Drezet, A.

E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “Polarization control of non-diffractive helical optical beams through subwavelength metallic apertures,” New J. Phys. 12(2), 023027 (2010).
[CrossRef]

Ebbesen, T. W.

E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “Polarization control of non-diffractive helical optical beams through subwavelength metallic apertures,” New J. Phys. 12(2), 023027 (2010).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Escalante, M.

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Genet, C.

E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “Polarization control of non-diffractive helical optical beams through subwavelength metallic apertures,” New J. Phys. 12(2), 023027 (2010).
[CrossRef]

Giessen, H.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

González, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Gorodetski, Y.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[CrossRef] [PubMed]

Hasman, E.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[CrossRef] [PubMed]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
[CrossRef] [PubMed]

Hesselink, L.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Jung, Y. S.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

Kang, M.

S.-Y. Lee, J. Park, H. Kim, S.-W. Cho, M. Kang, and B. Lee, “Controlling the state of surface plasmon vortex by changing the topoligical charge and polarization state,” Proc. SPIE 7757, 7757G (2010).

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[CrossRef] [PubMed]

Kim, H.

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[CrossRef] [PubMed]

S.-Y. Lee, J. Park, H. Kim, S.-W. Cho, M. Kang, and B. Lee, “Controlling the state of surface plasmon vortex by changing the topoligical charge and polarization state,” Proc. SPIE 7757, 7757G (2010).

H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008).
[CrossRef] [PubMed]

H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
[CrossRef] [PubMed]

Kim, H. K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

Kim, S.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

Kleiner, V.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[CrossRef] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[CrossRef] [PubMed]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
[CrossRef] [PubMed]

Korterik, J. P.

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Kubo, A.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Leach, J.

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004).
[CrossRef]

Lee, B.

S.-Y. Lee, J. Park, H. Kim, S.-W. Cho, M. Kang, and B. Lee, “Controlling the state of surface plasmon vortex by changing the topoligical charge and polarization state,” Proc. SPIE 7757, 7757G (2010).

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[CrossRef] [PubMed]

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16(12), 8969–8980 (2008).
[CrossRef] [PubMed]

H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
[CrossRef] [PubMed]

Lee, I.-M.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
[CrossRef] [PubMed]

Lee, S.-Y.

S.-Y. Lee, J. Park, H. Kim, S.-W. Cho, M. Kang, and B. Lee, “Controlling the state of surface plasmon vortex by changing the topoligical charge and polarization state,” Proc. SPIE 7757, 7757G (2010).

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[CrossRef] [PubMed]

Lee, W. M.

Lembessis, V. E.

V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt. 13(6), 064002 (2011).
[CrossRef]

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Lerman, G. M.

G. M. Lerman, L. Stern, and U. Levy, “Generation and tight focusing of hybridly polarized vector beams,” Opt. Express 18(26), 27650–27657 (2010).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Levy, U.

G. M. Lerman, L. Stern, and U. Levy, “Generation and tight focusing of hybridly polarized vector beams,” Opt. Express 18(26), 27650–27657 (2010).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Lin, J.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Lombard, E.

E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “Polarization control of non-diffractive helical optical beams through subwavelength metallic apertures,” New J. Phys. 12(2), 023027 (2010).
[CrossRef]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Martín-Moreno, L.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Mei, T.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

Mu, G. G.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

Nelson, R. L.

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[CrossRef] [PubMed]

Offerhaus, H. L.

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

Oh, D.-H.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

Onda, K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

Padgett, M. J.

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004).
[CrossRef]

Park, J.

S.-Y. Lee, J. Park, H. Kim, S.-W. Cho, M. Kang, and B. Lee, “Controlling the state of surface plasmon vortex by changing the topoligical charge and polarization state,” Proc. SPIE 7757, 7757G (2010).

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[CrossRef] [PubMed]

Petek, H.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Reinhard, B. M.

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Segerink, F. B.

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

Shitrit, N.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

Skovgaard, P. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Stern, L.

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Sun, Z.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

Tan, P. S.

P. S. Tan, G. H. Yuan, Q. Wang, N. Zhang, D. H. Zhang, and X.-C. Yuan, “Phase singularity of surface plasmon polaritons generated by optical vortices,” Opt. Lett. 36(16), 3287–3289 (2011).
[CrossRef] [PubMed]

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

Tao, S. H.

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Trevino, J.

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett. 11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

van den Bergen, B.

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

van Hulst, N. F.

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

Wang, Q.

P. S. Tan, G. H. Yuan, Q. Wang, N. Zhang, D. H. Zhang, and X.-C. Yuan, “Phase singularity of surface plasmon polaritons generated by optical vortices,” Opt. Lett. 36(16), 3287–3289 (2011).
[CrossRef] [PubMed]

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Yang, S.

Yao, E.

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004).
[CrossRef]

Yuan, G. H.

Yuan, X.-C.

Zhan, Q.

Zhang, D. H.

Zhang, N.

Zhang, X.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008).
[CrossRef]

J. Mod. Opt.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[CrossRef]

J. Opt.

V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt. 13(6), 064002 (2011).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett. 11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

Nat. Mater.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Phys.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

New J. Phys.

E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “Polarization control of non-diffractive helical optical beams through subwavelength metallic apertures,” New J. Phys. 12(2), 023027 (2010).
[CrossRef]

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Proc. SPIE

S.-Y. Lee, J. Park, H. Kim, S.-W. Cho, M. Kang, and B. Lee, “Controlling the state of surface plasmon vortex by changing the topoligical charge and polarization state,” Proc. SPIE 7757, 7757G (2010).

Other

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley Interscience, 2007).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Supplementary Material (1)

» Media 1: AVI (606 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Electric field distributions at a fixed time for various combinations of polarization states and helix winding numbers (Top panel: the LCP, middle panel: the radial polarization, bottom panel: the RCP). The helix winding number l varies from −1 to 2 with increment of 1 (Media 1).

Fig. 2
Fig. 2

Three cases of SP excitation at a slit (thick black line) with the backside illumination. The laser with the propagation wave vector k coming out of the paper illuminates bottom of slit and excites SPs on front-slide of slit. (a) The polarization of illuminating light is perpendicular to the slit. (b) The direction of the polarization having a nonzero angle to the direction of SPs propagation. (c) The slit is illuminated by the HVB.

Fig. 3
Fig. 3

Phase diagram of SPs generated at the PVL for four cases: (a) (l, m, s) = (0, 0, 0), (b) (l, m, s) = (1, 0, 0), (c) (l, m, s) = (0, 0, 1), and (d) (l, m, s) = (0, 1, 0). The most left panel corresponds to the phase of ωt = 0. As time evolves, each phase decreases since wave functions have the time-dependence of exp(-iωt). The most right panel exhibits the phase of ωt = 3π/2.

Fig. 4
Fig. 4

(a) Hypothetical experimental setup. The PVL is inscribed on the gold layer. The wavelength of laser is 660 nm and the corresponding wavelength of SPs is 629 nm. (b) The schematic of spiral slit (m = 1) and design parameters of the PVL are shown.

Fig. 5
Fig. 5

Simulation result with various HVBs for a fixed geometrical charge (m = 1, which is shown in Fig. 4(b)). For the sake of clear comparison, the arrangement of panels is the same as that in Fig. 1.

Fig. 6
Fig. 6

Geometric effect of PVL. (a) (l, m, s) = (0, 1, 0), (b) (l, m, s) = (0, 3, 0), (c) (l, m, s) = (−1, 3, −1).

Fig. 7
Fig. 7

Radius of vortex as a function of azimuthal phase term l. Each figure displays different geometric effect, (a) m = −1, (b) m = 0, (c) m = 1, (d) m = 2. The blue dashed, green dotted, and red solid lines with diamond, cross, and circle markers denote results of the RCP, the radial polarization, and the LCP, respectively. The black dashed lines denote solution of the Bessel function of the first kind.

Fig. 8
Fig. 8

Phase discontinuity breaks the plasmonic vortex pattern as shown in (a) with (l, m, s) = (0, 1.7, 0). The phase of surface plasmon at the center of PVL is represented in (b) with (l, m, s) = (0, 1.7, 0). The phase profile is obtained along the white circle and shown in (c) (l, m, s) = (0, 1.7, 0), (d) (l, m, s) = (1.3, 0, 0), (e) (l, m, s) = (1.3, 1.7, 0), and (f) (l, m, s) = (2, 0, 1). When j is fractional, the phase varies nonlinearly as shown in (c) and (d). When j is an integer, the phase varies linearly as shown in (e) and (f). This figure shows superposition property, j = l + m + s.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

j=l+m+s.
f(r,φ)= 0 2π g(ϕ)exp[j k SP |P(r,φ) Q SRC (b,ϕ)|]dϕ.
f(r,φ)2π J j ( k SP r)exp(i k SP b)exp[ij(φπ/2)],

Metrics