Abstract

We report the results of the investigation on a passively mode-locked Yb3+:CaGdAlO4 laser, pumped by a single transverse mode laser diode emitting 350 mW at 980 nm. This particular pump source allows efficient pumping with a nearly TEM00 beam and minimal thermal load, making the optimization of the mode-locking performance more straightforward than with higher-power multimode beams. Indeed, using a semiconductor saturable absorber mirror and extra-cavity dispersion compensation, pulses as short as 40 fs (31-nm spectrum) have been measured, tunable across 20 nm with 15-mW output power. Slightly longer Fourier-limited 46-fs pulses with 33 mW output power directly from the oscillator have been achieved, using a different saturable absorber mirror. Such overall performance, especially considering these are among the shortest pulses generated in diode-pumped ytterbium lasers, confirms the excellent qualities of Yb3+:CaGdAlO4.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35(13), 2302–2304 (2010).
    [CrossRef] [PubMed]
  2. C. Hönninger, F. Morier-Genoud, M. Moser, U. Keller, L. R. Brovelli, and C. Harder, “Efficient and tunable diode-pumped femtosecond Yb:glass lasers,” Opt. Lett. 23(2), 126–128 (1998).
    [CrossRef] [PubMed]
  3. S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO(4) oscillator,” Opt. Express 14(24), 11668–11671 (2006).
    [CrossRef] [PubMed]
  4. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb(3+):Sc(2)O(3) and Yb(3+):Y(2)O(3) ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009).
    [CrossRef] [PubMed]
  5. Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006).
    [CrossRef] [PubMed]
  6. A. Yoshida, A. Schmidt, V. Petrov, C. Fiebig, G. Erbert, J. Liu, H. Zhang, J. Wang, and U. Griebner, “Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses,” Opt. Lett. 36(22), 4425–4427 (2011).
    [CrossRef] [PubMed]
  7. O. H. Heckl, C. Kränkel, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, G. Huber, and U. Keller, “Continuous-wave and modelocked Yb:YCOB thin disk laser: first demonstration and future prospects,” Opt. Express 18(18), 19201–19208 (2010).
    [CrossRef] [PubMed]
  8. A. Guandalini, A. Greborio, and J. Aus-der-Au, “Sub-100-fs pulses with 12.5 W from Yb:CALGO based oscillators,” Solid State Lasers XXI: Technology and Devices, in SPIE Photonics West 2012, Paper 8235–31.
  9. P. F. Curley, Ch. Spielmann, T. Brabec, E. Wintner, and F. Krausz, “Periodic pulse evolution in solitary lasers,” J. Opt. Soc. Am. B 10(6), 1025–1028 (1993).
    [CrossRef]
  10. J. L. A. Chilla and O. E. Martinez, “Spatial—temporal analysis of the self-mode-locked Ti: sapphire laser,” J. Opt. Soc. Am. B 10(4), 638–643 (1993).
    [CrossRef]
  11. A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26(6), 1148–1157 (1990).
    [CrossRef]
  12. U. Siegner and U. Keller, in Handbook of Optics Vol. IV, M. Bass, ed. (McGraw-Hill, 2009), Chap. 18.
  13. K. G. Wilcox, Z. Mihoubi, G. J. Daniell, S. Elsmere, A. Quarterman, I. Farrer, D. A. Ritchie, and A. Tropper, “Ultrafast optical Stark mode-locked semiconductor laser,” Opt. Lett. 33(23), 2797–2799 (2008).
    [CrossRef] [PubMed]

2011 (1)

2010 (2)

2009 (1)

2008 (1)

2006 (2)

1998 (1)

1993 (2)

1990 (1)

A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26(6), 1148–1157 (1990).
[CrossRef]

Baer, C. R. E.

Balembois, F.

Brabec, T.

Brovelli, L. R.

Chilla, J. L. A.

Curley, P. F.

Daniell, G. J.

Didierjean, J.

Druon, F.

Elsmere, S.

Erbert, G.

Farrer, I.

Fiebig, C.

Georges, P.

Goldner, P.

Golling, M.

Griebner, U.

Harder, C.

Heckl, O. H.

Hönninger, C.

Huber, G.

Jiang, M.

Kaminskii, A. A.

Keller, U.

Kostenbauder, A. G.

A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26(6), 1148–1157 (1990).
[CrossRef]

Kränkel, C.

Krausz, F.

Liu, J.

Lucas Leclin, G.

Martinez, O. E.

Mateos, X.

Mihoubi, Z.

Morier-Genoud, F.

Moser, M.

Noriyuki, M.

Petermann, K.

Peters, R.

Petit, J.

Petrov, V.

Quarterman, A.

Ritchie, D. A.

Rivier, S.

Saraceno, C. J.

Schmidt, A.

Shirakawa, A.

Spielmann, Ch.

Südmeyer, T.

Tokurakawa, M.

Tropper, A.

Ueda, K.

Viana, B.

Wang, J.

Weyers, M.

Wilcox, K. G.

Wintner, E.

Yagi, H.

Yanagitani, T.

Yoshida, A.

Zaouter, Y.

Zhang, H.

Zorn, M.

IEEE J. Quantum Electron. (1)

A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26(6), 1148–1157 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (3)

Opt. Lett. (5)

Other (2)

U. Siegner and U. Keller, in Handbook of Optics Vol. IV, M. Bass, ed. (McGraw-Hill, 2009), Chap. 18.

A. Guandalini, A. Greborio, and J. Aus-der-Au, “Sub-100-fs pulses with 12.5 W from Yb:CALGO based oscillators,” Solid State Lasers XXI: Technology and Devices, in SPIE Photonics West 2012, Paper 8235–31.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup of the femtosecond oscillator. LD: laser diode; L1: aspheric lens; C1, C2: cylindrical telescope; L2: pump focussing lens; HWP: half-wave plate; PBS: polarization beam splitter; M1: 50-mm radius-of-curvature mirror (mounted with 100-mm focal lens in contact); M2: 100-mm radius-of-curvature mirror; OC: output coupler.

Fig. 2
Fig. 2

Results of operation in cw regime for different output coupler transmissions TOC, with a dielectric high-reflectivity mirror replacing the SESAM and no prisms in the cavity. Inset: tuning results in cw regime with a single intracavity prism.

Fig. 3
Fig. 3

Output pulse autocorrelation and optical spectrum with SESAM-1 (inset).

Fig. 4
Fig. 4

Chirped pulse autocorrelation at the output coupler (dashed line) and de-chirped compressed pulse autocorrelation with SESAM-2. Inset: optical spectrum.

Fig. 5
Fig. 5

Wavelength tuning with SESAM-2.

Metrics