Abstract

This paper proposes one broadly tunable terahertz (THz) slow-light system in a semiconductor-insulator-semiconductor structure. Subject to an external magnetic field, the structure supports in total two surface magneto plasmons (SMPs) bands above and below the surface plasma frequency, respectively. Both the SMPs bands can be tuned by the external magnetic field. Numerical studies show that leveraging on the two tunable bands, the frequency and the group velocity of the slowed-down THz wave can be widely tuned from 0.3 THz to 10 THz and from 1 c to 10−6 c, respectively, when the external magnetic field increases up to 6 Tesla. The proposed method based on the two SMPs bands can be widely used for many other plasmonic devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
    [CrossRef]
  2. R. Boyd, “Slow light now and then,” Nat. Photonics 2(8), 454–455 (2008).
    [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  4. L. V. Hau, “Optical information processing in Bose-Einstein condensates,” Nat. Photonics 2(8), 451–453 (2008).
    [CrossRef]
  5. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
    [CrossRef]
  6. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
    [CrossRef] [PubMed]
  7. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
    [CrossRef] [PubMed]
  8. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
    [CrossRef] [PubMed]
  9. C. Huang and C. Jiang, “Nonreciprocal photonic crystal delay waveguide,” J. Opt. Soc. Am. B 26(10), 1954–1958 (2009).
    [CrossRef]
  10. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
    [CrossRef]
  11. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
    [CrossRef] [PubMed]
  12. E. Fitrakis, T. Kamalakis, and T. Sphicopoulos, “Slow light in insulator-metal- insulator plasmonic waveguides,” J. Opt. Soc. Am. B 28(9), 2159–2164 (2011).
    [CrossRef]
  13. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  14. J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
    [CrossRef]
  15. J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
    [CrossRef]
  16. B. S. Passmore, D. G. Allen, S. R. Vangala, W. D. Goodhue, D. Wasserman, and E. A. Shaner, “Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb,” Opt. Express 17(12), 10223–10230 (2009).
    [CrossRef] [PubMed]
  17. J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005).
    [CrossRef] [PubMed]
  18. B. Hu, B. Gu, B. Dong, and Y. Zhang, “Optical transmission resonances tuned by external static magnetic field in an n-doped semiconductor grating with subwavelength slits,” Opt. Commun. 281(24), 6120–6123 (2008).
    [CrossRef]
  19. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2.
  20. J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
    [CrossRef]
  21. E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys. 33(3), 1193–1322 (1970).
    [CrossRef]
  22. B. Hu, Q. J. Wang, S. W. Kok, and Y. Zhang, “Active focal length control of terahertz slitted plane lenses by magnetoplasmons,” Plasmonics (published on line, 2011). http://www.springerlink.com/content/p531745636224004/
  23. M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B Condens. Matter 36(11), 5960–5967 (1987).
    [CrossRef] [PubMed]
  24. J. Rivas, A. Benet, J. Niehusmann, P. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71(15), 155110 (2005).
    [CrossRef]

2011 (1)

2010 (1)

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[CrossRef]

2009 (3)

2008 (5)

B. Hu, B. Gu, B. Dong, and Y. Zhang, “Optical transmission resonances tuned by external static magnetic field in an n-doped semiconductor grating with subwavelength slits,” Opt. Commun. 281(24), 6120–6123 (2008).
[CrossRef]

L. V. Hau, “Optical information processing in Bose-Einstein condensates,” Nat. Photonics 2(8), 451–453 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

R. Boyd, “Slow light now and then,” Nat. Photonics 2(8), 454–455 (2008).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[CrossRef] [PubMed]

2007 (1)

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
[CrossRef]

2005 (3)

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[CrossRef] [PubMed]

J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005).
[CrossRef] [PubMed]

J. Rivas, A. Benet, J. Niehusmann, P. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71(15), 155110 (2005).
[CrossRef]

2004 (3)

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2003 (1)

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

1987 (1)

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B Condens. Matter 36(11), 5960–5967 (1987).
[CrossRef] [PubMed]

1972 (1)

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[CrossRef]

1970 (1)

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys. 33(3), 1193–1322 (1970).
[CrossRef]

Allen, D. G.

Bai, W.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[CrossRef]

Bartoli, F. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Benet, A.

J. Rivas, A. Benet, J. Niehusmann, P. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71(15), 155110 (2005).
[CrossRef]

Bolivar, P.

J. Rivas, A. Benet, J. Niehusmann, P. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71(15), 155110 (2005).
[CrossRef]

Bolivar, P. H.

Boyd, R.

R. Boyd, “Slow light now and then,” Nat. Photonics 2(8), 454–455 (2008).
[CrossRef]

Brion, J. J.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[CrossRef]

Burstein, E.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[CrossRef]

Cai, L.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[CrossRef]

Ding, Y. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[CrossRef] [PubMed]

Dong, B.

B. Hu, B. Gu, B. Dong, and Y. Zhang, “Optical transmission resonances tuned by external static magnetic field in an n-doped semiconductor grating with subwavelength slits,” Opt. Commun. 281(24), 6120–6123 (2008).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Fan, S.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[CrossRef] [PubMed]

Fitrakis, E.

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[CrossRef] [PubMed]

Furdyna, J. K.

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys. 33(3), 1193–1322 (1970).
[CrossRef]

Gan, Q.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Gómez Rivas, J.

J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005).
[CrossRef] [PubMed]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

Goodhue, W. D.

Gu, B.

B. Hu, B. Gu, B. Dong, and Y. Zhang, “Optical transmission resonances tuned by external static magnetic field in an n-doped semiconductor grating with subwavelength slits,” Opt. Commun. 281(24), 6120–6123 (2008).
[CrossRef]

Halevi, P.

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B Condens. Matter 36(11), 5960–5967 (1987).
[CrossRef] [PubMed]

Haring Bolivar, P.

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hartstein, A.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[CrossRef]

Hau, L. V.

L. V. Hau, “Optical information processing in Bose-Einstein condensates,” Nat. Photonics 2(8), 451–453 (2008).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hawkins, A. R.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[CrossRef]

Hu, B.

B. Hu, B. Gu, B. Dong, and Y. Zhang, “Optical transmission resonances tuned by external static magnetic field in an n-doped semiconductor grating with subwavelength slits,” Opt. Commun. 281(24), 6120–6123 (2008).
[CrossRef]

Huang, C.

Hulbert, J. F.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[CrossRef]

Hurd, K.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[CrossRef]

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[CrossRef] [PubMed]

Janke, C.

Jiang, C.

Joannopoulos, J. D.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[CrossRef] [PubMed]

Kamalakis, T.

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

Kuipers, L.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
[CrossRef]

Kurz, H.

J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005).
[CrossRef] [PubMed]

J. Rivas, A. Benet, J. Niehusmann, P. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71(15), 155110 (2005).
[CrossRef]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

Kushwaha, M. S.

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B Condens. Matter 36(11), 5960–5967 (1987).
[CrossRef] [PubMed]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[CrossRef] [PubMed]

Lunt, E. J.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[CrossRef]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Niehusmann, J.

J. Rivas, A. Benet, J. Niehusmann, P. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71(15), 155110 (2005).
[CrossRef]

Palik, E. D.

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys. 33(3), 1193–1322 (1970).
[CrossRef]

Passmore, B. S.

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Rivas, J.

J. Rivas, A. Benet, J. Niehusmann, P. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71(15), 155110 (2005).
[CrossRef]

Sandtke, M.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
[CrossRef]

Schmidt, H.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[CrossRef]

Schotsch, C.

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

Shaner, E. A.

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[CrossRef] [PubMed]

Song, G.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[CrossRef]

Sphicopoulos, T.

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[CrossRef] [PubMed]

Vangala, S. R.

Wallis, R. F.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[CrossRef]

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[CrossRef] [PubMed]

Wasserman, D.

Wu, B.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[CrossRef]

Xu, Y.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[CrossRef]

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[CrossRef]

Zhang, Y.

B. Hu, B. Gu, B. Dong, and Y. Zhang, “Optical transmission resonances tuned by external static magnetic field in an n-doped semiconductor grating with subwavelength slits,” Opt. Commun. 281(24), 6120–6123 (2008).
[CrossRef]

J. Appl. Phys. (1)

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (5)

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

R. Boyd, “Slow light now and then,” Nat. Photonics 2(8), 454–455 (2008).
[CrossRef]

L. V. Hau, “Optical information processing in Bose-Einstein condensates,” Nat. Photonics 2(8), 451–453 (2008).
[CrossRef]

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[CrossRef]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
[CrossRef]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Commun. (1)

B. Hu, B. Gu, B. Dong, and Y. Zhang, “Optical transmission resonances tuned by external static magnetic field in an n-doped semiconductor grating with subwavelength slits,” Opt. Commun. 281(24), 6120–6123 (2008).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (2)

J. Rivas, A. Benet, J. Niehusmann, P. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71(15), 155110 (2005).
[CrossRef]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B Condens. Matter 36(11), 5960–5967 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[CrossRef] [PubMed]

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys. 33(3), 1193–1322 (1970).
[CrossRef]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Other (2)

B. Hu, Q. J. Wang, S. W. Kok, and Y. Zhang, “Active focal length control of terahertz slitted plane lenses by magnetoplasmons,” Plasmonics (published on line, 2011). http://www.springerlink.com/content/p531745636224004/

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic structure of the THz plasmonic slow-light system. The magnetic field B is applied perpendicularly to the propagating direction of the THz wave in a Voigt configuration. (b) Dispersion relation of the SMPs modes in the structure in THz frequencies under magnetic fields with different magnitudes.

Fig. 2
Fig. 2

(a) Bulk Voigt permittivity εV as a function of the incident frequency without an external magnetic field (black dashed line) and with a 0.5 Tesla magnetic field (blue lines) applied. (b) and (c) Normalized Ex intensities of the SMPs mode along the x-axis under an external magnetic field of 1 Tesla for the incident frequencies at 1 THz and 3 THz, which are in the lower and higher bands, respectively.

Fig. 3
Fig. 3

Slow-light effect of the proposed structure under an external magnetic field. (a) Normalized group velocity of the structure with 0 to 2 Tesla external magnetic fields (lines: numerical results by fitting dispersion curves in Fig. 1; Triangular points: FDTD simulation results). (b) Incident frequencies versus their corresponding magnetic field intensities required. The lower and the higher bands under the magnetic field are indicated by the blue and the pink shadows, respectively.

Fig. 4
Fig. 4

Group velocity of a monochromatic wave tuning by the magnetic field. (a) f = 1 THz in the lower band; (b) f = 3THz in the higher band. Blue lines: results from the analytical model. Red dots: FDTD simulation results.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε s = ε [ ε xx 0 ε xz 0 ε yy 0 ε xz 0 ε xx ].
tanh(w κ 1 )[ 1+ ( ε d ε V ) 2 κ 2 2 κ 1 2 + ( ε d ε V ) 2 ( ε xz ε xx ) 2 β 2 κ 1 2 ]+2 ε d ε V κ 2 κ 1 =0,
B=± m * e [ ω p 2 ε ω( ε d + ε ) ω ],

Metrics