Abstract

Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Miyamoto and S. Suzuki, “Advanced optical modulation and multiplexing technologies for high-capacity OTN based on 100 Gb/s channel and beyond,” IEEE Commun. Mag.48(3), S65–S72 (2010).
    [CrossRef]
  2. L.-S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photon. J.3, 325–328 (2011).
  3. H. G. Batshon, I. B. Djordjevic, and T. Schmidt, “Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPC-coded modulation,” Opt. Express18(19), 20546–20551 (2010).
    [CrossRef] [PubMed]
  4. E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol.27(22), 5115–5126 (2009).
    [CrossRef]
  5. M. Arabaci, I. B. Djordjevic, L. Xu, and T. Wang, “Four-dimensional nonbinary LDPC-coded modulation schemes for ultra high-speed optical fiber communication,” IEEE Photon. Technol. Lett.23(18), 1280–1282 (2011).
    [CrossRef]
  6. I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett.19(12), 874–876 (2007).
    [CrossRef]
  7. M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary quasi-cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett.22(6), 434–436 (2010).
    [CrossRef]
  8. I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol.27(16), 3518–3530 (2009).
    [CrossRef]
  9. M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks,” Opt. Express18(3), 1820–1832 (2010).
    [CrossRef] [PubMed]
  10. M. Tüchler, R. Koetter, and A. Singer, “Turbo equalization: Principles and new results,” IEEE Trans. Commun.50(5), 754–767 (2002).
    [CrossRef]
  11. I. B. Djordjevic, L. L. Minkov, L. Xu, and T. Wang, “Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using turbo equalization,” J. Opt. Commun. Netw.1(6), 555–564 (2009).
    [CrossRef]

2011

L.-S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photon. J.3, 325–328 (2011).

M. Arabaci, I. B. Djordjevic, L. Xu, and T. Wang, “Four-dimensional nonbinary LDPC-coded modulation schemes for ultra high-speed optical fiber communication,” IEEE Photon. Technol. Lett.23(18), 1280–1282 (2011).
[CrossRef]

2010

H. G. Batshon, I. B. Djordjevic, and T. Schmidt, “Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPC-coded modulation,” Opt. Express18(19), 20546–20551 (2010).
[CrossRef] [PubMed]

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary quasi-cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett.22(6), 434–436 (2010).
[CrossRef]

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks,” Opt. Express18(3), 1820–1832 (2010).
[CrossRef] [PubMed]

Y. Miyamoto and S. Suzuki, “Advanced optical modulation and multiplexing technologies for high-capacity OTN based on 100 Gb/s channel and beyond,” IEEE Commun. Mag.48(3), S65–S72 (2010).
[CrossRef]

2009

2007

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett.19(12), 874–876 (2007).
[CrossRef]

2002

M. Tüchler, R. Koetter, and A. Singer, “Turbo equalization: Principles and new results,” IEEE Trans. Commun.50(5), 754–767 (2002).
[CrossRef]

Agrell, E.

Arabaci, M.

M. Arabaci, I. B. Djordjevic, L. Xu, and T. Wang, “Four-dimensional nonbinary LDPC-coded modulation schemes for ultra high-speed optical fiber communication,” IEEE Photon. Technol. Lett.23(18), 1280–1282 (2011).
[CrossRef]

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary quasi-cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett.22(6), 434–436 (2010).
[CrossRef]

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks,” Opt. Express18(3), 1820–1832 (2010).
[CrossRef] [PubMed]

I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol.27(16), 3518–3530 (2009).
[CrossRef]

Batshon, H. G.

Cvijetic, M.

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett.19(12), 874–876 (2007).
[CrossRef]

Djordjevic, I. B.

M. Arabaci, I. B. Djordjevic, L. Xu, and T. Wang, “Four-dimensional nonbinary LDPC-coded modulation schemes for ultra high-speed optical fiber communication,” IEEE Photon. Technol. Lett.23(18), 1280–1282 (2011).
[CrossRef]

H. G. Batshon, I. B. Djordjevic, and T. Schmidt, “Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPC-coded modulation,” Opt. Express18(19), 20546–20551 (2010).
[CrossRef] [PubMed]

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks,” Opt. Express18(3), 1820–1832 (2010).
[CrossRef] [PubMed]

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary quasi-cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett.22(6), 434–436 (2010).
[CrossRef]

I. B. Djordjevic, L. L. Minkov, L. Xu, and T. Wang, “Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using turbo equalization,” J. Opt. Commun. Netw.1(6), 555–564 (2009).
[CrossRef]

I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol.27(16), 3518–3530 (2009).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett.19(12), 874–876 (2007).
[CrossRef]

Karlsson, M.

Koetter, R.

M. Tüchler, R. Koetter, and A. Singer, “Turbo equalization: Principles and new results,” IEEE Trans. Commun.50(5), 754–767 (2002).
[CrossRef]

Liu, X.

L.-S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photon. J.3, 325–328 (2011).

Marcoccia, R. M.

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary quasi-cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett.22(6), 434–436 (2010).
[CrossRef]

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks,” Opt. Express18(3), 1820–1832 (2010).
[CrossRef] [PubMed]

Minkov, L. L.

Miyamoto, Y.

Y. Miyamoto and S. Suzuki, “Advanced optical modulation and multiplexing technologies for high-capacity OTN based on 100 Gb/s channel and beyond,” IEEE Commun. Mag.48(3), S65–S72 (2010).
[CrossRef]

Saunders, R.

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary quasi-cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett.22(6), 434–436 (2010).
[CrossRef]

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks,” Opt. Express18(3), 1820–1832 (2010).
[CrossRef] [PubMed]

Schmidt, T.

Shieh, W.

L.-S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photon. J.3, 325–328 (2011).

Singer, A.

M. Tüchler, R. Koetter, and A. Singer, “Turbo equalization: Principles and new results,” IEEE Trans. Commun.50(5), 754–767 (2002).
[CrossRef]

Suzuki, S.

Y. Miyamoto and S. Suzuki, “Advanced optical modulation and multiplexing technologies for high-capacity OTN based on 100 Gb/s channel and beyond,” IEEE Commun. Mag.48(3), S65–S72 (2010).
[CrossRef]

Tüchler, M.

M. Tüchler, R. Koetter, and A. Singer, “Turbo equalization: Principles and new results,” IEEE Trans. Commun.50(5), 754–767 (2002).
[CrossRef]

Wang, T.

M. Arabaci, I. B. Djordjevic, L. Xu, and T. Wang, “Four-dimensional nonbinary LDPC-coded modulation schemes for ultra high-speed optical fiber communication,” IEEE Photon. Technol. Lett.23(18), 1280–1282 (2011).
[CrossRef]

I. B. Djordjevic, L. L. Minkov, L. Xu, and T. Wang, “Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using turbo equalization,” J. Opt. Commun. Netw.1(6), 555–564 (2009).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett.19(12), 874–876 (2007).
[CrossRef]

Xu, L.

M. Arabaci, I. B. Djordjevic, L. Xu, and T. Wang, “Four-dimensional nonbinary LDPC-coded modulation schemes for ultra high-speed optical fiber communication,” IEEE Photon. Technol. Lett.23(18), 1280–1282 (2011).
[CrossRef]

I. B. Djordjevic, L. L. Minkov, L. Xu, and T. Wang, “Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using turbo equalization,” J. Opt. Commun. Netw.1(6), 555–564 (2009).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett.19(12), 874–876 (2007).
[CrossRef]

Yan, L.-S.

L.-S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photon. J.3, 325–328 (2011).

IEEE Commun. Mag.

Y. Miyamoto and S. Suzuki, “Advanced optical modulation and multiplexing technologies for high-capacity OTN based on 100 Gb/s channel and beyond,” IEEE Commun. Mag.48(3), S65–S72 (2010).
[CrossRef]

IEEE Photon. J.

L.-S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photon. J.3, 325–328 (2011).

IEEE Photon. Technol. Lett.

M. Arabaci, I. B. Djordjevic, L. Xu, and T. Wang, “Four-dimensional nonbinary LDPC-coded modulation schemes for ultra high-speed optical fiber communication,” IEEE Photon. Technol. Lett.23(18), 1280–1282 (2011).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett.19(12), 874–876 (2007).
[CrossRef]

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary quasi-cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett.22(6), 434–436 (2010).
[CrossRef]

IEEE Trans. Commun.

M. Tüchler, R. Koetter, and A. Singer, “Turbo equalization: Principles and new results,” IEEE Trans. Commun.50(5), 754–767 (2002).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Dispersion map of the 4D-LDPC-CM transmission system under test.

Fig. 2
Fig. 2

(a) Transmitter and (b) receiver configurations of 4D-NB-LDPC-CM.

Fig. 3
Fig. 3

(a) Transmitter and (b) receiver configurations of 4D-BI-LDPC-CM.

Fig. 4
Fig. 4

BER vs. transmission distance comparisons between (a) 4D-BI-LDPC-CM and PDM-2D-BI-LDPC-CM, and (b) 4D-NB-LDPC-CM and PDM-2D-NB-LDPC-CM.

Fig. 5
Fig. 5

BER vs. transmission distance comparison of 4D-NB-LDPC-CM and 4D-BI-LDPC-CM.

Tables (1)

Tables Icon

Table 1 SMF and DCF parameters

Metrics