Abstract

A novel spectrophone sensor prototype consisting of a T-shaped acoustic microresonator (T-mR) in off-beam quartz-enhanced photoacoustic spectroscopy (T-mR QEPAS) is introduced for the first time. Its performance was evaluated and optimized through an acoustic model and experimental investigation via detection of water vapor in the atmosphere. The present work shows that the use of T-mR in QEPAS based sensor can improve the detection sensitivity by a factor of up to ~30, compared with that using only a bare QTF. This value is as high as that obtained in a conventional “on-beam” QEPAS, while keeping the advantages of “off-beam” QEPAS configuration: it is no longer necessary to couple excitation light beam through the narrow gap between the QTF prongs. In addition, the T-mR is really suitable for mass production with high precision.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
    [CrossRef] [PubMed]
  2. F. K. Tittel, G. Wysocki, A. A. Kosterev, and Y. Bakhirkin, “Semiconductor laser based trace gas sensor technology: recent advances and applications,” in Mid-Infrared Coherent Sources and Applications, Ebrahim-Zadeh, M., Sorokina, I.T., Eds. (Springer, 2007), 467–493.
  3. H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36(4), 481–483 (2011).
    [CrossRef] [PubMed]
  4. S. Böttger, M. Angelmahr, and W. Schade, “Photoacoustic Gas Detection with LED QEPAS,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CH_P14.
  5. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
    [CrossRef]
  6. K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
    [CrossRef] [PubMed]
  7. K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
    [CrossRef] [PubMed]
  8. H. Yi, W. Chen, X. Guo, S. Sun, K. Liu, T. Tan, W. Zhang, and X. Gao, “An acoustic model for microresonator in on beam quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B (2012). DOI .
    [CrossRef] [PubMed]
  9. B. Baumann, B. Kost, H. Groninga, and M. Wolff, “Eigenmode analysis of photoacoustic sensors via finite element method,” Rev. Sci. Instrum. 77(4), 044901 (2006).
    [CrossRef]
  10. A. Elia, V. Spagnolo, C. D. Franco, P. M. Lugarà, and G. Scamarcio, “Trace gas sensing using quantum cascade lasers and a fiber-coupled optoacoustic sensor: application to formaldehyde,” 15th International Conference on Photoacoustic and Photothermal Phenomena (ICPPP15),” J. Phys.: Conference Series 214, 012037 (2010).
    [CrossRef]
  11. S. L. Firebaugh, F. Roignant, and E. A. Terray, “Enhancing sensitivity in tuning fork photoacoustic spectroscopy systems,” in Sensor Application Symposium (SAS), 23–25 Feb. (IEEE Press, New York 2010), 30–35.
  12. P. Merkli, “Acoustic resonance frequencies for a T-tube,” Z. Angew. Math. Phys. 29(3), 486–498 (1978) (ZAMP).
    [CrossRef]
  13. D. Li and J. S. Vipperman, “On the design of long T-shaped acoustic resonators,” J. Acoust. Soc. Am. 116(5), 2785–2792 (2004).
    [CrossRef]
  14. A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
    [CrossRef]
  15. E. G. Richardson, Technical Aspects of Sound: Sonic Range and Airborne Sound (Elsevier Pub. Co., 1957), pp. 12–13 and 487–496.
  16. L. E. Kinsler and A. R. Frey, Fundamentals of Acoustics (John Wiley& Sons, Inc., 1962), pp. 116–118 and 186–213.

2012 (1)

H. Yi, W. Chen, X. Guo, S. Sun, K. Liu, T. Tan, W. Zhang, and X. Gao, “An acoustic model for microresonator in on beam quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B (2012). DOI .
[CrossRef] [PubMed]

2011 (1)

2010 (3)

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[CrossRef]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[CrossRef] [PubMed]

A. Elia, V. Spagnolo, C. D. Franco, P. M. Lugarà, and G. Scamarcio, “Trace gas sensing using quantum cascade lasers and a fiber-coupled optoacoustic sensor: application to formaldehyde,” 15th International Conference on Photoacoustic and Photothermal Phenomena (ICPPP15),” J. Phys.: Conference Series 214, 012037 (2010).
[CrossRef]

2009 (1)

2006 (1)

B. Baumann, B. Kost, H. Groninga, and M. Wolff, “Eigenmode analysis of photoacoustic sensors via finite element method,” Rev. Sci. Instrum. 77(4), 044901 (2006).
[CrossRef]

2004 (1)

D. Li and J. S. Vipperman, “On the design of long T-shaped acoustic resonators,” J. Acoust. Soc. Am. 116(5), 2785–2792 (2004).
[CrossRef]

2002 (1)

2001 (1)

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[CrossRef]

1978 (1)

P. Merkli, “Acoustic resonance frequencies for a T-tube,” Z. Angew. Math. Phys. 29(3), 486–498 (1978) (ZAMP).
[CrossRef]

Bakhirkin, Y. A.

Baumann, B.

B. Baumann, B. Kost, H. Groninga, and M. Wolff, “Eigenmode analysis of photoacoustic sensors via finite element method,” Rev. Sci. Instrum. 77(4), 044901 (2006).
[CrossRef]

Bozóki, Z.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[CrossRef]

Chen, W.

H. Yi, W. Chen, X. Guo, S. Sun, K. Liu, T. Tan, W. Zhang, and X. Gao, “An acoustic model for microresonator in on beam quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B (2012). DOI .
[CrossRef] [PubMed]

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36(4), 481–483 (2011).
[CrossRef] [PubMed]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[CrossRef] [PubMed]

K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
[CrossRef] [PubMed]

Curl, R. F.

Dong, L.

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[CrossRef] [PubMed]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[CrossRef]

Elia, A.

A. Elia, V. Spagnolo, C. D. Franco, P. M. Lugarà, and G. Scamarcio, “Trace gas sensing using quantum cascade lasers and a fiber-coupled optoacoustic sensor: application to formaldehyde,” 15th International Conference on Photoacoustic and Photothermal Phenomena (ICPPP15),” J. Phys.: Conference Series 214, 012037 (2010).
[CrossRef]

Franco, C. D.

A. Elia, V. Spagnolo, C. D. Franco, P. M. Lugarà, and G. Scamarcio, “Trace gas sensing using quantum cascade lasers and a fiber-coupled optoacoustic sensor: application to formaldehyde,” 15th International Conference on Photoacoustic and Photothermal Phenomena (ICPPP15),” J. Phys.: Conference Series 214, 012037 (2010).
[CrossRef]

Gao, X.

H. Yi, W. Chen, X. Guo, S. Sun, K. Liu, T. Tan, W. Zhang, and X. Gao, “An acoustic model for microresonator in on beam quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B (2012). DOI .
[CrossRef] [PubMed]

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36(4), 481–483 (2011).
[CrossRef] [PubMed]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[CrossRef] [PubMed]

K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
[CrossRef] [PubMed]

Groninga, H.

B. Baumann, B. Kost, H. Groninga, and M. Wolff, “Eigenmode analysis of photoacoustic sensors via finite element method,” Rev. Sci. Instrum. 77(4), 044901 (2006).
[CrossRef]

Guo, X.

H. Yi, W. Chen, X. Guo, S. Sun, K. Liu, T. Tan, W. Zhang, and X. Gao, “An acoustic model for microresonator in on beam quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B (2012). DOI .
[CrossRef] [PubMed]

K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
[CrossRef] [PubMed]

Hess, P.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[CrossRef]

Kost, B.

B. Baumann, B. Kost, H. Groninga, and M. Wolff, “Eigenmode analysis of photoacoustic sensors via finite element method,” Rev. Sci. Instrum. 77(4), 044901 (2006).
[CrossRef]

Kosterev, A. A.

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[CrossRef] [PubMed]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[CrossRef] [PubMed]

Li, D.

D. Li and J. S. Vipperman, “On the design of long T-shaped acoustic resonators,” J. Acoust. Soc. Am. 116(5), 2785–2792 (2004).
[CrossRef]

Liu, K.

H. Yi, W. Chen, X. Guo, S. Sun, K. Liu, T. Tan, W. Zhang, and X. Gao, “An acoustic model for microresonator in on beam quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B (2012). DOI .
[CrossRef] [PubMed]

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36(4), 481–483 (2011).
[CrossRef] [PubMed]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[CrossRef] [PubMed]

K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
[CrossRef] [PubMed]

Lugarà, P. M.

A. Elia, V. Spagnolo, C. D. Franco, P. M. Lugarà, and G. Scamarcio, “Trace gas sensing using quantum cascade lasers and a fiber-coupled optoacoustic sensor: application to formaldehyde,” 15th International Conference on Photoacoustic and Photothermal Phenomena (ICPPP15),” J. Phys.: Conference Series 214, 012037 (2010).
[CrossRef]

Merkli, P.

P. Merkli, “Acoustic resonance frequencies for a T-tube,” Z. Angew. Math. Phys. 29(3), 486–498 (1978) (ZAMP).
[CrossRef]

Miklós, A.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[CrossRef]

Scamarcio, G.

A. Elia, V. Spagnolo, C. D. Franco, P. M. Lugarà, and G. Scamarcio, “Trace gas sensing using quantum cascade lasers and a fiber-coupled optoacoustic sensor: application to formaldehyde,” 15th International Conference on Photoacoustic and Photothermal Phenomena (ICPPP15),” J. Phys.: Conference Series 214, 012037 (2010).
[CrossRef]

Spagnolo, V.

A. Elia, V. Spagnolo, C. D. Franco, P. M. Lugarà, and G. Scamarcio, “Trace gas sensing using quantum cascade lasers and a fiber-coupled optoacoustic sensor: application to formaldehyde,” 15th International Conference on Photoacoustic and Photothermal Phenomena (ICPPP15),” J. Phys.: Conference Series 214, 012037 (2010).
[CrossRef]

Sun, S.

H. Yi, W. Chen, X. Guo, S. Sun, K. Liu, T. Tan, W. Zhang, and X. Gao, “An acoustic model for microresonator in on beam quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B (2012). DOI .
[CrossRef] [PubMed]

Tan, T.

H. Yi, W. Chen, X. Guo, S. Sun, K. Liu, T. Tan, W. Zhang, and X. Gao, “An acoustic model for microresonator in on beam quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B (2012). DOI .
[CrossRef] [PubMed]

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36(4), 481–483 (2011).
[CrossRef] [PubMed]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[CrossRef] [PubMed]

Thomazy, D.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[CrossRef]

Tittel, F. K.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[CrossRef]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[CrossRef] [PubMed]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[CrossRef] [PubMed]

Vipperman, J. S.

D. Li and J. S. Vipperman, “On the design of long T-shaped acoustic resonators,” J. Acoust. Soc. Am. 116(5), 2785–2792 (2004).
[CrossRef]

Wang, L.

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36(4), 481–483 (2011).
[CrossRef] [PubMed]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[CrossRef] [PubMed]

Wolff, M.

B. Baumann, B. Kost, H. Groninga, and M. Wolff, “Eigenmode analysis of photoacoustic sensors via finite element method,” Rev. Sci. Instrum. 77(4), 044901 (2006).
[CrossRef]

Yi, H.

H. Yi, W. Chen, X. Guo, S. Sun, K. Liu, T. Tan, W. Zhang, and X. Gao, “An acoustic model for microresonator in on beam quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B (2012). DOI .
[CrossRef] [PubMed]

H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36(4), 481–483 (2011).
[CrossRef] [PubMed]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[CrossRef] [PubMed]

K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
[CrossRef] [PubMed]

Zhang, W.

H. Yi, W. Chen, X. Guo, S. Sun, K. Liu, T. Tan, W. Zhang, and X. Gao, “An acoustic model for microresonator in on beam quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B (2012). DOI .
[CrossRef] [PubMed]

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[CrossRef] [PubMed]

K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 34(10), 1594–1596 (2009).
[CrossRef] [PubMed]

Appl. Phys. B (2)

H. Yi, W. Chen, X. Guo, S. Sun, K. Liu, T. Tan, W. Zhang, and X. Gao, “An acoustic model for microresonator in on beam quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B (2012). DOI .
[CrossRef] [PubMed]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[CrossRef]

J. Acoust. Soc. Am. (1)

D. Li and J. S. Vipperman, “On the design of long T-shaped acoustic resonators,” J. Acoust. Soc. Am. 116(5), 2785–2792 (2004).
[CrossRef]

J. Phys.: Conference Series (1)

A. Elia, V. Spagnolo, C. D. Franco, P. M. Lugarà, and G. Scamarcio, “Trace gas sensing using quantum cascade lasers and a fiber-coupled optoacoustic sensor: application to formaldehyde,” 15th International Conference on Photoacoustic and Photothermal Phenomena (ICPPP15),” J. Phys.: Conference Series 214, 012037 (2010).
[CrossRef]

Opt. Lett. (3)

Rev. Sci. Instrum. (3)

K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation,” Rev. Sci. Instrum. 81(10), 103103 (2010).
[CrossRef] [PubMed]

B. Baumann, B. Kost, H. Groninga, and M. Wolff, “Eigenmode analysis of photoacoustic sensors via finite element method,” Rev. Sci. Instrum. 77(4), 044901 (2006).
[CrossRef]

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[CrossRef]

Z. Angew. Math. Phys. (1)

P. Merkli, “Acoustic resonance frequencies for a T-tube,” Z. Angew. Math. Phys. 29(3), 486–498 (1978) (ZAMP).
[CrossRef]

Other (5)

E. G. Richardson, Technical Aspects of Sound: Sonic Range and Airborne Sound (Elsevier Pub. Co., 1957), pp. 12–13 and 487–496.

L. E. Kinsler and A. R. Frey, Fundamentals of Acoustics (John Wiley& Sons, Inc., 1962), pp. 116–118 and 186–213.

F. K. Tittel, G. Wysocki, A. A. Kosterev, and Y. Bakhirkin, “Semiconductor laser based trace gas sensor technology: recent advances and applications,” in Mid-Infrared Coherent Sources and Applications, Ebrahim-Zadeh, M., Sorokina, I.T., Eds. (Springer, 2007), 467–493.

S. Böttger, M. Angelmahr, and W. Schade, “Photoacoustic Gas Detection with LED QEPAS,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CH_P14.

S. L. Firebaugh, F. Roignant, and E. A. Terray, “Enhancing sensitivity in tuning fork photoacoustic spectroscopy systems,” in Sensor Application Symposium (SAS), 23–25 Feb. (IEEE Press, New York 2010), 30–35.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

T-shaped mR based QEPAS spectrophone configuration. (a1) 3D map of an ideal T-shaped mR based QEPAS approach; (a2) 3D map of a T-mR made with a cubic aluminum block in the present work; (a3) cross section profile along axis of the main pipe of an ideal T-shaped mR; (a4) orifice formed by a QTF placed as close as possible to the branch pipe end of an ideal T-shaped mR; (a5) setup consisting of an ideal T-shaped mR and a QTF observed from the cross section along axis of the branch pipe.

Fig. 2
Fig. 2

Theoretical model for calculation of the optimum T-mR parameters. (b1) T-shaped mR and coordinate system; (b2) orifice area Ω1 of the branch pipe end close to the QTF (seen from the axis of the branch pipe and the gap between QTF prongs); (b3) gap (between the QTF and the branch pipe end) district surface area Ω0; (b4) equivalent of a circular orifice (Fig. 2(b4)) to the real non-circular orifice (b2) with an effective area Ω = Ω1.

Fig. 3
Fig. 3

Experimental set up of a T-mR based QEPAS. RS232: communication port for remote control and data exchange; PC: personal computer; GPIB: General Purpose Interface Bus; DAQ card: data acquisition card.

Fig. 4
Fig. 4

Second harmonic QEPAS signal of H2O vapor absorption at 7161.41cm−1 using T-mR1 based QEPAS sensor.

Tables (1)

Tables Icon

Table 1 Parameters of the T-shaped mR tested in the experiment, as well as the related experimental results

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

Z( L 0 )=(Z(0)j ρυ S 0 tan(k L 0 ))/(1+ S 0 jρυ Z(0)tan(k L 0 ))
1 Z 10 (0) = 1 Z 2E (0) + 1 Z 3F (0)
Z 10 (0)=( Z 1C (- L 1 )j ρυ S 0 tan(k L 1 ))/(1+ S 0 jρυ Z 1C (- L 1 )tan(k L 1 ))
Z 2A (- L 2 )=( Z 2E (0)j ρυ S 2 tan(k L 2 ))/(1+ S 2 jρυ Z 2E (0)tan(k L 2 ))
Z 3B ( L 3 )=( Z 3F (0)j ρυ S 3 tan(k L 3 ))/(1+ S 3 jρυ Z 3F (0)tan(k L 3 ))
Z 2A ( L 2 )= Z 3B ( L 3 )=0
Z 2E (0)=jρυtan(k L 2 )/ S 2
Z 3F (0)=jρυtan(k L 3 )/ S 3
1 Z 1C (0) = α jρυk = 1 Z o + 1 Z s = α o jρυk + α s jρυk = α o + α s jρυk
α= α o + α s
α o =d(1+ d/D 1 ) 1.19
α s = Ω 0 / T 1 =π D 1 g/ T 1
α= α o + α s =d (1 +d/D 1 ) 1.19 +π D 1 g/ T 1
d=2 (Ω/π) 1/2
Ω= Ω 1 =2 R 1 2 arcsin(w/(2 R 1 ))+w ( R 1 2 w 2 /4) 1/2
tan(k L 2 )/2S=( k α tan(k L 1 ) S 1 )/(1+ k α S 1 tan(k L 1 ))
Δl=(0.60+0.22exp(kT/r))×r
Δ l 2A =Δ l 3B 0.85R
tan(kΔ l 1C )=k S 1 /α
 Δ l 10 0.60 R 1
L 1 = l 1 +Δ l 10 +Δ l 1C
L=l+Δ l 2A +Δ l 3B
lLΔ l 2A Δ l 3B =L1.70R
T (6/π R 2 ) 1/2 R
T 1 (1.5/π) 1/2 R 1
SNR Gain=(S a / S b )× ( Q b / Q a ) 1/2 =(QSE factor)× ( Q b / Q a ) 1/2
υ(t) = 331.6+0.6t
< V N 2 > = Δf R g (4 k B T)/R

Metrics