Abstract

We present a widely-tunable, singly-resonant optical parametric oscillator, emitting more than 1 W between 2.7 and 4.2 μm, which is phase locked to a self-referenced frequency comb. Both pump and signal frequencies are directly phase-locked to the frequency comb of a NIR-emitting fs mode-locked fibre laser, linked, in turn, to the caesium primary standard. We estimate for the idler frequency a fractional Allan deviation of ∼ 3 × 10−12τ−1/2 between 1 and 200 s. To test the spectroscopic performance of the OPO, we carried out saturation spectroscopy of several transitions belonging to the ν1 rovibrational band of CH3I, resolving their electronic quadrupole hyperfine structure, estimating a linewidth better than 200 kHz FWHM for the idler, and determining the absolute frequency of the hyperfine components with a 50-kHz-uncertainty.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998)
    [CrossRef]
  2. A. Hecker, M. Havenith, C. Braxmaier, U. Strößner, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous wave optical parametric oscillator,” Opt. Commun. 218, 131–134 (2003).
    [CrossRef]
  3. M. M. J. W. van Herpen, S. E. Bisson, and F. J. M. Harren, “Continuous-wave operation of a single-frequency optical parametric oscillator at 45 μm based on periodically poled LiNbO3,” Opt. Lett. 28, 2497–2499 (2003).
    [CrossRef] [PubMed]
  4. G. von Basum, D. Halmer, P. Hering, M. Mürtz, S. Schiller, F. Müller, A. Popp, and F. Kühnemann, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator cavity leak-out spectrometer,” Opt. Lett. 29, 797–799 (2004).
    [CrossRef] [PubMed]
  5. A. K. Y. Ngai, S. T. Persijn, G. Von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
    [CrossRef]
  6. H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
    [CrossRef]
  7. D. D. Arslanov, S. Cristescu, and F. J. M. Harren, “Optical parametric oscillator based off-axis integrated cavity output spectroscopy for rapid chemical sensing,” Opt. Lett. 35, 3300–3302 (2010).
    [CrossRef] [PubMed]
  8. S. Persijn, F. Harren, and A. Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Appl. Phys. B 100, 383–390 (2010).
    [CrossRef]
  9. D. D. Arslanov, M. Spunei, A. K. Y. Ngai, S. M. Cristescu, I. D. Lindsay, S. T. Persijn, K.-J. Boller, and F. J. M. Harren, “Rapid and sensitive trace gas detection with continuous wave optical parametric oscillator-based wavelength modulation spectroscopy” Appl. Phys. B 103, 223–228 (2011).
    [CrossRef]
  10. E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett. 26, 1430–1432 (2001).
    [CrossRef]
  11. H. Inaba, T. Ikegami, F.-L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, “Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer,” Appl. Opt. 45, 491–4915 (2006).
    [CrossRef]
  12. S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
    [CrossRef]
  13. M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy,” Appl. Opt. 50, A1–A10 (2011).
    [CrossRef] [PubMed]
  14. M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36, 4122–4124 (2011).
    [CrossRef] [PubMed]
  15. P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
    [CrossRef]
  16. I. Galli, S. Bartalini, S. Borri, P. Cancio Pastor, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
    [CrossRef] [PubMed]
  17. S. Okubo, H. Nakayama, and H. Sasada, “Hyperfine-resolved 3.4-μm spectroscopy of CH3I with a widely tunable difference frequency generation source and a cavity-enhanced cell: a case study of a local Coriolis interaction between the ν1 = 1 and (ν2, ν6l) = (1, 22) states,” Phys. Rev. A 83, 012505 (2011).
    [CrossRef]
  18. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A singly-resonant optical parametric oscillator for mid-infrared high-resolution spectroscopy,” submitted to Molecular Physics (2012).
  19. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
    [CrossRef]
  20. S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng. 49, 111122 (2010).
    [CrossRef]
  21. E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett. 30, 3141–3143 (2005).
    [CrossRef] [PubMed]
  22. J. L. Hall and J. A. Magyar, “High-resolution saturated absorption studies of methane and some methyl-halides,” in High Resolution Laser Spectroscopy, K. Shimoda, ed. (Springer-Verlag, 1976), pp. 173–199.
    [CrossRef]
  23. P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20, 052001 (2009).
    [CrossRef]
  24. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, 1975).
  25. R. Paso, V. M. Horneman, and R. Anttila, “Analysis of the ν1 band of CH3I,” J. Mol. Spectrosc. 101, 193–198 (1983).
    [CrossRef]
  26. G. Buffa, A. Di Lieto, P. Minguzzi, O. Tarrini, and M. Tonelli, “Nuclear-quadrupole effects in the pressure broadening of molecular lines,” Phys. Rev. A 37, 3790–3794 (1988).
    [CrossRef] [PubMed]
  27. K. Schneider and S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. B 65, 775–777 (1997).
    [CrossRef]
  28. U. Strössner, J.-P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Rosenman, J. Mlynek, S. Schiller, and A. Peters, “Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830 nm,” J. Opt. Soc. Am. B 19, 1419–1424 (2002).
    [CrossRef]
  29. P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia, G. Di Lonardo, and P. De Natale, “Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 μm,” J. Chem. Phys. 133, 154317 (2010).
    [CrossRef] [PubMed]

2012 (1)

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A singly-resonant optical parametric oscillator for mid-infrared high-resolution spectroscopy,” submitted to Molecular Physics (2012).

2011 (4)

D. D. Arslanov, M. Spunei, A. K. Y. Ngai, S. M. Cristescu, I. D. Lindsay, S. T. Persijn, K.-J. Boller, and F. J. M. Harren, “Rapid and sensitive trace gas detection with continuous wave optical parametric oscillator-based wavelength modulation spectroscopy” Appl. Phys. B 103, 223–228 (2011).
[CrossRef]

M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy,” Appl. Opt. 50, A1–A10 (2011).
[CrossRef] [PubMed]

M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36, 4122–4124 (2011).
[CrossRef] [PubMed]

S. Okubo, H. Nakayama, and H. Sasada, “Hyperfine-resolved 3.4-μm spectroscopy of CH3I with a widely tunable difference frequency generation source and a cavity-enhanced cell: a case study of a local Coriolis interaction between the ν1 = 1 and (ν2, ν6l) = (1, 22) states,” Phys. Rev. A 83, 012505 (2011).
[CrossRef]

2010 (7)

I. Galli, S. Bartalini, S. Borri, P. Cancio Pastor, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[CrossRef] [PubMed]

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

D. D. Arslanov, S. Cristescu, and F. J. M. Harren, “Optical parametric oscillator based off-axis integrated cavity output spectroscopy for rapid chemical sensing,” Opt. Lett. 35, 3300–3302 (2010).
[CrossRef] [PubMed]

S. Persijn, F. Harren, and A. Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Appl. Phys. B 100, 383–390 (2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng. 49, 111122 (2010).
[CrossRef]

P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia, G. Di Lonardo, and P. De Natale, “Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 μm,” J. Chem. Phys. 133, 154317 (2010).
[CrossRef] [PubMed]

2009 (1)

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20, 052001 (2009).
[CrossRef]

2007 (1)

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

2006 (2)

A. K. Y. Ngai, S. T. Persijn, G. Von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
[CrossRef]

H. Inaba, T. Ikegami, F.-L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, “Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer,” Appl. Opt. 45, 491–4915 (2006).
[CrossRef]

2005 (2)

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
[CrossRef]

E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett. 30, 3141–3143 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

A. Hecker, M. Havenith, C. Braxmaier, U. Strößner, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous wave optical parametric oscillator,” Opt. Commun. 218, 131–134 (2003).
[CrossRef]

M. M. J. W. van Herpen, S. E. Bisson, and F. J. M. Harren, “Continuous-wave operation of a single-frequency optical parametric oscillator at 45 μm based on periodically poled LiNbO3,” Opt. Lett. 28, 2497–2499 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

1998 (1)

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998)
[CrossRef]

1997 (1)

K. Schneider and S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. B 65, 775–777 (1997).
[CrossRef]

1988 (1)

G. Buffa, A. Di Lieto, P. Minguzzi, O. Tarrini, and M. Tonelli, “Nuclear-quadrupole effects in the pressure broadening of molecular lines,” Phys. Rev. A 37, 3790–3794 (1988).
[CrossRef] [PubMed]

1983 (1)

R. Paso, V. M. Horneman, and R. Anttila, “Analysis of the ν1 band of CH3I,” J. Mol. Spectrosc. 101, 193–198 (1983).
[CrossRef]

Anttila, R.

R. Paso, V. M. Horneman, and R. Anttila, “Analysis of the ν1 band of CH3I,” J. Mol. Spectrosc. 101, 193–198 (1983).
[CrossRef]

Arie, A.

Arslanov, D. D.

D. D. Arslanov, M. Spunei, A. K. Y. Ngai, S. M. Cristescu, I. D. Lindsay, S. T. Persijn, K.-J. Boller, and F. J. M. Harren, “Rapid and sensitive trace gas detection with continuous wave optical parametric oscillator-based wavelength modulation spectroscopy” Appl. Phys. B 103, 223–228 (2011).
[CrossRef]

D. D. Arslanov, S. Cristescu, and F. J. M. Harren, “Optical parametric oscillator based off-axis integrated cavity output spectroscopy for rapid chemical sensing,” Opt. Lett. 35, 3300–3302 (2010).
[CrossRef] [PubMed]

Bartalini, S.

I. Galli, S. Bartalini, S. Borri, P. Cancio Pastor, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng. 49, 111122 (2010).
[CrossRef]

Becher, C.

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

Bisson, S. E.

Bitou, Y.

H. Inaba, T. Ikegami, F.-L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, “Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer,” Appl. Opt. 45, 491–4915 (2006).
[CrossRef]

Boller, K.-J.

D. D. Arslanov, M. Spunei, A. K. Y. Ngai, S. M. Cristescu, I. D. Lindsay, S. T. Persijn, K.-J. Boller, and F. J. M. Harren, “Rapid and sensitive trace gas detection with continuous wave optical parametric oscillator-based wavelength modulation spectroscopy” Appl. Phys. B 103, 223–228 (2011).
[CrossRef]

Borri, S.

I. Galli, S. Bartalini, S. Borri, P. Cancio Pastor, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng. 49, 111122 (2010).
[CrossRef]

Braxmaier, C.

A. Hecker, M. Havenith, C. Braxmaier, U. Strößner, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous wave optical parametric oscillator,” Opt. Commun. 218, 131–134 (2003).
[CrossRef]

E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett. 26, 1430–1432 (2001).
[CrossRef]

Buffa, G.

G. Buffa, A. Di Lieto, P. Minguzzi, O. Tarrini, and M. Tonelli, “Nuclear-quadrupole effects in the pressure broadening of molecular lines,” Phys. Rev. A 37, 3790–3794 (1988).
[CrossRef] [PubMed]

Cancio, P.

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng. 49, 111122 (2010).
[CrossRef]

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20, 052001 (2009).
[CrossRef]

Cancio Pastor, P.

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Cristescu, S.

Cristescu, S. M.

D. D. Arslanov, M. Spunei, A. K. Y. Ngai, S. M. Cristescu, I. D. Lindsay, S. T. Persijn, K.-J. Boller, and F. J. M. Harren, “Rapid and sensitive trace gas detection with continuous wave optical parametric oscillator-based wavelength modulation spectroscopy” Appl. Phys. B 103, 223–228 (2011).
[CrossRef]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

De Natale, P.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A singly-resonant optical parametric oscillator for mid-infrared high-resolution spectroscopy,” submitted to Molecular Physics (2012).

I. Galli, S. Bartalini, S. Borri, P. Cancio Pastor, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng. 49, 111122 (2010).
[CrossRef]

P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia, G. Di Lonardo, and P. De Natale, “Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 μm,” J. Chem. Phys. 133, 154317 (2010).
[CrossRef] [PubMed]

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20, 052001 (2009).
[CrossRef]

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
[CrossRef]

De Rosa, M.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A singly-resonant optical parametric oscillator for mid-infrared high-resolution spectroscopy,” submitted to Molecular Physics (2012).

P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia, G. Di Lonardo, and P. De Natale, “Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 μm,” J. Chem. Phys. 133, 154317 (2010).
[CrossRef] [PubMed]

De Tommasi, E.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A singly-resonant optical parametric oscillator for mid-infrared high-resolution spectroscopy,” submitted to Molecular Physics (2012).

P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia, G. Di Lonardo, and P. De Natale, “Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 μm,” J. Chem. Phys. 133, 154317 (2010).
[CrossRef] [PubMed]

Dekorsy, D.

Di Lieto, A.

G. Buffa, A. Di Lieto, P. Minguzzi, O. Tarrini, and M. Tonelli, “Nuclear-quadrupole effects in the pressure broadening of molecular lines,” Phys. Rev. A 37, 3790–3794 (1988).
[CrossRef] [PubMed]

Di Lonardo, G.

P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia, G. Di Lonardo, and P. De Natale, “Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 μm,” J. Chem. Phys. 133, 154317 (2010).
[CrossRef] [PubMed]

Gagliardi, G.

P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia, G. Di Lonardo, and P. De Natale, “Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 μm,” J. Chem. Phys. 133, 154317 (2010).
[CrossRef] [PubMed]

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
[CrossRef]

Galli, I.

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng. 49, 111122 (2010).
[CrossRef]

I. Galli, S. Bartalini, S. Borri, P. Cancio Pastor, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[CrossRef] [PubMed]

Giusfredi, G.

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng. 49, 111122 (2010).
[CrossRef]

I. Galli, S. Bartalini, S. Borri, P. Cancio Pastor, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[CrossRef] [PubMed]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Hall, J. L.

J. L. Hall and J. A. Magyar, “High-resolution saturated absorption studies of methane and some methyl-halides,” in High Resolution Laser Spectroscopy, K. Shimoda, ed. (Springer-Verlag, 1976), pp. 173–199.
[CrossRef]

Halmer, D.

Halonen, L.

Harren, F.

S. Persijn, F. Harren, and A. Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Appl. Phys. B 100, 383–390 (2010).
[CrossRef]

Harren, F. J. M.

D. D. Arslanov, M. Spunei, A. K. Y. Ngai, S. M. Cristescu, I. D. Lindsay, S. T. Persijn, K.-J. Boller, and F. J. M. Harren, “Rapid and sensitive trace gas detection with continuous wave optical parametric oscillator-based wavelength modulation spectroscopy” Appl. Phys. B 103, 223–228 (2011).
[CrossRef]

D. D. Arslanov, S. Cristescu, and F. J. M. Harren, “Optical parametric oscillator based off-axis integrated cavity output spectroscopy for rapid chemical sensing,” Opt. Lett. 35, 3300–3302 (2010).
[CrossRef] [PubMed]

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

A. K. Y. Ngai, S. T. Persijn, G. Von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
[CrossRef]

M. M. J. W. van Herpen, S. E. Bisson, and F. J. M. Harren, “Continuous-wave operation of a single-frequency optical parametric oscillator at 45 μm based on periodically poled LiNbO3,” Opt. Lett. 28, 2497–2499 (2003).
[CrossRef] [PubMed]

Havenith, M.

A. Hecker, M. Havenith, C. Braxmaier, U. Strößner, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous wave optical parametric oscillator,” Opt. Commun. 218, 131–134 (2003).
[CrossRef]

Hecker, A.

A. Hecker, M. Havenith, C. Braxmaier, U. Strößner, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous wave optical parametric oscillator,” Opt. Commun. 218, 131–134 (2003).
[CrossRef]

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998)
[CrossRef]

Hering, P.

Hong, F.-L.

H. Inaba, T. Ikegami, F.-L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, “Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer,” Appl. Opt. 45, 491–4915 (2006).
[CrossRef]

Horneman, V. M.

R. Paso, V. M. Horneman, and R. Anttila, “Analysis of the ν1 band of CH3I,” J. Mol. Spectrosc. 101, 193–198 (1983).
[CrossRef]

Ikegami, T.

H. Inaba, T. Ikegami, F.-L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, “Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer,” Appl. Opt. 45, 491–4915 (2006).
[CrossRef]

Inaba, H.

H. Inaba, T. Ikegami, F.-L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, “Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer,” Appl. Opt. 45, 491–4915 (2006).
[CrossRef]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Kovalchuk, E. V.

Kühnemann, F.

G. von Basum, D. Halmer, P. Hering, M. Mürtz, S. Schiller, F. Müller, A. Popp, and F. Kühnemann, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator cavity leak-out spectrometer,” Opt. Lett. 29, 797–799 (2004).
[CrossRef] [PubMed]

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998)
[CrossRef]

Lee, D.-H.

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Lindsay, I. D.

D. D. Arslanov, M. Spunei, A. K. Y. Ngai, S. M. Cristescu, I. D. Lindsay, S. T. Persijn, K.-J. Boller, and F. J. M. Harren, “Rapid and sensitive trace gas detection with continuous wave optical parametric oscillator-based wavelength modulation spectroscopy” Appl. Phys. B 103, 223–228 (2011).
[CrossRef]

Linnartz, H.

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

Lvovsky, A. I.

Maddaloni, P.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A singly-resonant optical parametric oscillator for mid-infrared high-resolution spectroscopy,” submitted to Molecular Physics (2012).

P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia, G. Di Lonardo, and P. De Natale, “Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 μm,” J. Chem. Phys. 133, 154317 (2010).
[CrossRef] [PubMed]

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20, 052001 (2009).
[CrossRef]

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
[CrossRef]

Magyar, J. A.

J. L. Hall and J. A. Magyar, “High-resolution saturated absorption studies of methane and some methyl-halides,” in High Resolution Laser Spectroscopy, K. Shimoda, ed. (Springer-Verlag, 1976), pp. 173–199.
[CrossRef]

Malara, P.

P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia, G. Di Lonardo, and P. De Natale, “Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 μm,” J. Chem. Phys. 133, 154317 (2010).
[CrossRef] [PubMed]

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
[CrossRef]

Martis, A. A. E.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998)
[CrossRef]

Matsumoto, H.

H. Inaba, T. Ikegami, F.-L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, “Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer,” Appl. Opt. 45, 491–4915 (2006).
[CrossRef]

Mazzotti, D.

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng. 49, 111122 (2010).
[CrossRef]

I. Galli, S. Bartalini, S. Borri, P. Cancio Pastor, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[CrossRef] [PubMed]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Merimaa, M.

Meyn, J.-P.

Minguzzi, P.

G. Buffa, A. Di Lieto, P. Minguzzi, O. Tarrini, and M. Tonelli, “Nuclear-quadrupole effects in the pressure broadening of molecular lines,” Phys. Rev. A 37, 3790–3794 (1988).
[CrossRef] [PubMed]

Minoshima, K.

H. Inaba, T. Ikegami, F.-L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, “Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer,” Appl. Opt. 45, 491–4915 (2006).
[CrossRef]

Mlynek, J.

Mosca, S.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A singly-resonant optical parametric oscillator for mid-infrared high-resolution spectroscopy,” submitted to Molecular Physics (2012).

Müller, F.

Mürtz, M.

Nakayama, H.

S. Okubo, H. Nakayama, and H. Sasada, “Hyperfine-resolved 3.4-μm spectroscopy of CH3I with a widely tunable difference frequency generation source and a cavity-enhanced cell: a case study of a local Coriolis interaction between the ν1 = 1 and (ν2, ν6l) = (1, 22) states,” Phys. Rev. A 83, 012505 (2011).
[CrossRef]

Ngai, A. K. Y.

D. D. Arslanov, M. Spunei, A. K. Y. Ngai, S. M. Cristescu, I. D. Lindsay, S. T. Persijn, K.-J. Boller, and F. J. M. Harren, “Rapid and sensitive trace gas detection with continuous wave optical parametric oscillator-based wavelength modulation spectroscopy” Appl. Phys. B 103, 223–228 (2011).
[CrossRef]

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

A. K. Y. Ngai, S. T. Persijn, G. Von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
[CrossRef]

Okubo, S.

S. Okubo, H. Nakayama, and H. Sasada, “Hyperfine-resolved 3.4-μm spectroscopy of CH3I with a widely tunable difference frequency generation source and a cavity-enhanced cell: a case study of a local Coriolis interaction between the ν1 = 1 and (ν2, ν6l) = (1, 22) states,” Phys. Rev. A 83, 012505 (2011).
[CrossRef]

Onae, A.

H. Inaba, T. Ikegami, F.-L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, “Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer,” Appl. Opt. 45, 491–4915 (2006).
[CrossRef]

Paso, R.

R. Paso, V. M. Horneman, and R. Anttila, “Analysis of the ν1 band of CH3I,” J. Mol. Spectrosc. 101, 193–198 (1983).
[CrossRef]

Peltola, J.

Persijn, S.

S. Persijn, F. Harren, and A. Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Appl. Phys. B 100, 383–390 (2010).
[CrossRef]

Persijn, S. T.

D. D. Arslanov, M. Spunei, A. K. Y. Ngai, S. M. Cristescu, I. D. Lindsay, S. T. Persijn, K.-J. Boller, and F. J. M. Harren, “Rapid and sensitive trace gas detection with continuous wave optical parametric oscillator-based wavelength modulation spectroscopy” Appl. Phys. B 103, 223–228 (2011).
[CrossRef]

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

A. K. Y. Ngai, S. T. Persijn, G. Von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
[CrossRef]

Peters, A.

Popp, A.

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Ricciardi, I.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A singly-resonant optical parametric oscillator for mid-infrared high-resolution spectroscopy,” submitted to Molecular Physics (2012).

P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia, G. Di Lonardo, and P. De Natale, “Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 μm,” J. Chem. Phys. 133, 154317 (2010).
[CrossRef] [PubMed]

Rocco, A.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A singly-resonant optical parametric oscillator for mid-infrared high-resolution spectroscopy,” submitted to Molecular Physics (2012).

Rosenman, G.

Sasada, H.

S. Okubo, H. Nakayama, and H. Sasada, “Hyperfine-resolved 3.4-μm spectroscopy of CH3I with a widely tunable difference frequency generation source and a cavity-enhanced cell: a case study of a local Coriolis interaction between the ν1 = 1 and (ν2, ν6l) = (1, 22) states,” Phys. Rev. A 83, 012505 (2011).
[CrossRef]

Schawlow, A. L.

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, 1975).

Schibli, T. R.

H. Inaba, T. Ikegami, F.-L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, “Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer,” Appl. Opt. 45, 491–4915 (2006).
[CrossRef]

Schiller, S.

Schneider, K.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998)
[CrossRef]

K. Schneider and S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. B 65, 775–777 (1997).
[CrossRef]

Schuldt, T.

Siltanen, M.

Spunei, M.

D. D. Arslanov, M. Spunei, A. K. Y. Ngai, S. M. Cristescu, I. D. Lindsay, S. T. Persijn, K.-J. Boller, and F. J. M. Harren, “Rapid and sensitive trace gas detection with continuous wave optical parametric oscillator-based wavelength modulation spectroscopy” Appl. Phys. B 103, 223–228 (2011).
[CrossRef]

Strößner, U.

A. Hecker, M. Havenith, C. Braxmaier, U. Strößner, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous wave optical parametric oscillator,” Opt. Commun. 218, 131–134 (2003).
[CrossRef]

Strössner, U.

Tamassia, F.

P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia, G. Di Lonardo, and P. De Natale, “Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 μm,” J. Chem. Phys. 133, 154317 (2010).
[CrossRef] [PubMed]

Tarrini, O.

G. Buffa, A. Di Lieto, P. Minguzzi, O. Tarrini, and M. Tonelli, “Nuclear-quadrupole effects in the pressure broadening of molecular lines,” Phys. Rev. A 37, 3790–3794 (1988).
[CrossRef] [PubMed]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Tonelli, M.

G. Buffa, A. Di Lieto, P. Minguzzi, O. Tarrini, and M. Tonelli, “Nuclear-quadrupole effects in the pressure broadening of molecular lines,” Phys. Rev. A 37, 3790–3794 (1988).
[CrossRef] [PubMed]

Townes, C. H.

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, 1975).

Urban, W.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998)
[CrossRef]

Urenski, P.

Vainio, M.

van Herpen, M. M. J. W.

Veen, A.

S. Persijn, F. Harren, and A. Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Appl. Phys. B 100, 383–390 (2010).
[CrossRef]

Verbraak, H.

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

Von Basum, G.

A. K. Y. Ngai, S. T. Persijn, G. Von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
[CrossRef]

G. von Basum, D. Halmer, P. Hering, M. Mürtz, S. Schiller, F. Müller, A. Popp, and F. Kühnemann, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator cavity leak-out spectrometer,” Opt. Lett. 29, 797–799 (2004).
[CrossRef] [PubMed]

Wallenstein, R.

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Zaske, S.

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

Zondy, J.-J.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A singly-resonant optical parametric oscillator for mid-infrared high-resolution spectroscopy,” submitted to Molecular Physics (2012).

Appl. Opt. (2)

H. Inaba, T. Ikegami, F.-L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, “Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer,” Appl. Opt. 45, 491–4915 (2006).
[CrossRef]

M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy,” Appl. Opt. 50, A1–A10 (2011).
[CrossRef] [PubMed]

Appl. Phys. B (7)

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66, 741–745 (1998)
[CrossRef]

A. K. Y. Ngai, S. T. Persijn, G. Von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
[CrossRef]

S. Persijn, F. Harren, and A. Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Appl. Phys. B 100, 383–390 (2010).
[CrossRef]

D. D. Arslanov, M. Spunei, A. K. Y. Ngai, S. M. Cristescu, I. D. Lindsay, S. T. Persijn, K.-J. Boller, and F. J. M. Harren, “Rapid and sensitive trace gas detection with continuous wave optical parametric oscillator-based wavelength modulation spectroscopy” Appl. Phys. B 103, 223–228 (2011).
[CrossRef]

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
[CrossRef]

K. Schneider and S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. B 65, 775–777 (1997).
[CrossRef]

Chem. Phys. Lett. (2)

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

J. Chem. Phys. (1)

P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia, G. Di Lonardo, and P. De Natale, “Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3 μm,” J. Chem. Phys. 133, 154317 (2010).
[CrossRef] [PubMed]

J. Mol. Spectrosc. (1)

R. Paso, V. M. Horneman, and R. Anttila, “Analysis of the ν1 band of CH3I,” J. Mol. Spectrosc. 101, 193–198 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20, 052001 (2009).
[CrossRef]

Molecular Physics (1)

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A singly-resonant optical parametric oscillator for mid-infrared high-resolution spectroscopy,” submitted to Molecular Physics (2012).

Opt. Commun. (1)

A. Hecker, M. Havenith, C. Braxmaier, U. Strößner, and A. Peters, “High resolution Doppler-free spectroscopy of molecular iodine using a continuous wave optical parametric oscillator,” Opt. Commun. 218, 131–134 (2003).
[CrossRef]

Opt. Eng. (1)

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng. 49, 111122 (2010).
[CrossRef]

Opt. Lett. (7)

E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett. 30, 3141–3143 (2005).
[CrossRef] [PubMed]

M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36, 4122–4124 (2011).
[CrossRef] [PubMed]

M. M. J. W. van Herpen, S. E. Bisson, and F. J. M. Harren, “Continuous-wave operation of a single-frequency optical parametric oscillator at 45 μm based on periodically poled LiNbO3,” Opt. Lett. 28, 2497–2499 (2003).
[CrossRef] [PubMed]

G. von Basum, D. Halmer, P. Hering, M. Mürtz, S. Schiller, F. Müller, A. Popp, and F. Kühnemann, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator cavity leak-out spectrometer,” Opt. Lett. 29, 797–799 (2004).
[CrossRef] [PubMed]

D. D. Arslanov, S. Cristescu, and F. J. M. Harren, “Optical parametric oscillator based off-axis integrated cavity output spectroscopy for rapid chemical sensing,” Opt. Lett. 35, 3300–3302 (2010).
[CrossRef] [PubMed]

E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett. 26, 1430–1432 (2001).
[CrossRef]

I. Galli, S. Bartalini, S. Borri, P. Cancio Pastor, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[CrossRef] [PubMed]

Phys. Rev. A (2)

S. Okubo, H. Nakayama, and H. Sasada, “Hyperfine-resolved 3.4-μm spectroscopy of CH3I with a widely tunable difference frequency generation source and a cavity-enhanced cell: a case study of a local Coriolis interaction between the ν1 = 1 and (ν2, ν6l) = (1, 22) states,” Phys. Rev. A 83, 012505 (2011).
[CrossRef]

G. Buffa, A. Di Lieto, P. Minguzzi, O. Tarrini, and M. Tonelli, “Nuclear-quadrupole effects in the pressure broadening of molecular lines,” Phys. Rev. A 37, 3790–3794 (1988).
[CrossRef] [PubMed]

Other (2)

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, 1975).

J. L. Hall and J. A. Magyar, “High-resolution saturated absorption studies of methane and some methyl-halides,” in High Resolution Laser Spectroscopy, K. Shimoda, ed. (Springer-Verlag, 1976), pp. 173–199.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Simplified scheme of the OPO phase-locking to the optical frequency comb (OFC). (b) Scheme of the OPO four-mirrors ring cavity and saturation spectroscopy setup. PPLN: periodically-poled lithium niobate crystal; PZT: piezoelectric actuator; E: YAG etalon; Ge: germanium filter; BS: 98%-transmission beam splitter; PD: photodiode; PR: partial reflecting mirror.

Fig. 2
Fig. 2

Allan deviation of the three relevant contributions to the idler frequency (see Eq. 1). The gate time of the frequency counters is 1 s.

Fig. 3
Fig. 3

Sub-Doppler-resolved hyperfine structure of the ν1 P(18,3) rovibrational transition of CH3I, at 30 mTorr pressure and with 630 mW of saturating power. Experimental data (open squares) have been fitted by a linear background and six Lorentian derivatives, with equal widths and amplitudes (solid line).

Tables (1)

Tables Icon

Table 1 Measured absolute frequencies of the six hyperfine components of ν1 P(18,3) rovibrational transition, given as relative position with respect to the centroid frequency of the multiplet, 88791204.19 ± 0.05 MHz. Errors on the last significative digits (in parentheses) are the standard deviations of the fit results from different data sets. Theoretical values are reported for comparison.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν i = ν p ν s = ( N p N s ) f r + f b 1 f b2 + f EOM .

Metrics