L. Novotny and N. F. van Hulst, “Antennas for Light,” Nat. Photonics5(2), 83–90 (2011).

[CrossRef]

M. G. Araújo, J. M. Taboada, J. Rivero, and F. Obelleiro, “Comparison of Surface Integral Equations for Left-Handed Materials,” Prog. Electromagn. Res.118, 425–440 (2011).

[CrossRef]

Ö. Ergül, “Fast and Accurate Analysis of Homogenized Metamaterials With the Surface Integral Equations and the Multilevel Fast Multipole Algorithm,” IEEE Antennas Wirel. Propag. Lett.10, 1286–1289 (2011).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28(7), 1341–1348 (2011).

[CrossRef]
[PubMed]

B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A27(10), 2261–2271 (2010).

[CrossRef]
[PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).

[CrossRef]
[PubMed]

M. Salaün, B. Corbett, S. B. Newcomb, and M. E. Pemble, “Fabrication and characterization of three-dimensional silver/air inverted opal photonic crystals,” J. Mater. Chem.20(36), 7870–7874 (2010).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Improving conditioning of electromagnetic surface integral equations using normalized field quantities,” IEEE Trans. Antenn. Propag.55(1), 178–185 (2007).

[CrossRef]

Y. A. Liu and W. C. Chew, “Stability of surface integral equation for left-handed materials,” IEEE Trans. Microw. Antennas Propag.1(1), 84–89 (2007).

[CrossRef]

T. W. Lloyd, J. M. Song, and M. Yang, “Numerical study of surface integral formulations for low-contrast objects,” IEEE Antennas Wirel. Propag. Lett.4(1), 482–485 (2005).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects,” IEEE Trans. Antenn. Propag.53(10), 3316–3323 (2005).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antenn. Propag.53(3), 1168–1173 (2005).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40(6), RS6002 (2005).

[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).

[CrossRef]
[PubMed]

J. Zhou, Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, “Three-dimensional photonic band gap structure of a polymer-metal composite,” Appl. Phys. Lett.76, 3337–3339 (2000).

R. E. Hodges and Y. Rahmat-Samii, “The evaluation of MFIE integrals with the use of vector triangle basis functions,” Microw. Opt. Technol. Lett.14(1), 9–14 (1997).

[CrossRef]

R. D. Graglia, “On the numerical integration of the linear shape functions times the 3-D green’s function or its gradient on a plane triangle,” IEEE Trans. Antenn. Propag.41(10), 1448–1455 (1993).

[CrossRef]

Y. Saad and M. Schultz, “Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAMJ. Sci. Statist. Comput.7(3), 856–869 (1986).

[CrossRef]

D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, “Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antenn. Propag.32(3), 276–281 (1984).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag.30(3), 409–418 (1982).

[CrossRef]

J. R. Mautz and R. F. Harrington, “Electromagnetic scattering from a homogeneous material body of revolution,” Arch. Elektr. Uebertrag.33, 71–80 (1979).

T. Weiland, “A discretization method for the solution of Maxwell’s equations for six-component fields,” Arch. Elektron. Übertragungstech.31, 116–120 (1977).

A. Taflove and M. E. Brodwin, “Numerical solution of steadystate electromagnetic scattering problems using the timedependent Maxwell’s equations,” IEEE Trans. Microw. Theory Tech.23(8), 623–630 (1975).

[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).

[CrossRef]

D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, “Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antenn. Propag.32(3), 276–281 (1984).

[CrossRef]

M. G. Araújo, J. M. Taboada, J. Rivero, and F. Obelleiro, “Comparison of Surface Integral Equations for Left-Handed Materials,” Prog. Electromagn. Res.118, 425–440 (2011).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28(7), 1341–1348 (2011).

[CrossRef]
[PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).

[CrossRef]
[PubMed]

A. Taflove and M. E. Brodwin, “Numerical solution of steadystate electromagnetic scattering problems using the timedependent Maxwell’s equations,” IEEE Trans. Microw. Theory Tech.23(8), 623–630 (1975).

[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).

[CrossRef]
[PubMed]

D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, “Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antenn. Propag.32(3), 276–281 (1984).

[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).

[CrossRef]
[PubMed]

J. Zhou, Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, “Three-dimensional photonic band gap structure of a polymer-metal composite,” Appl. Phys. Lett.76, 3337–3339 (2000).

Y. A. Liu and W. C. Chew, “Stability of surface integral equation for left-handed materials,” IEEE Trans. Microw. Antennas Propag.1(1), 84–89 (2007).

[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).

[CrossRef]

M. Salaün, B. Corbett, S. B. Newcomb, and M. E. Pemble, “Fabrication and characterization of three-dimensional silver/air inverted opal photonic crystals,” J. Mater. Chem.20(36), 7870–7874 (2010).

[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).

[CrossRef]
[PubMed]

Ö. Ergül, “Fast and Accurate Analysis of Homogenized Metamaterials With the Surface Integral Equations and the Multilevel Fast Multipole Algorithm,” IEEE Antennas Wirel. Propag. Lett.10, 1286–1289 (2011).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antenn. Propag.57(1), 176–187 (2009).

[CrossRef]

D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, “Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antenn. Propag.32(3), 276–281 (1984).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag.30(3), 409–418 (1982).

[CrossRef]

R. D. Graglia, “On the numerical integration of the linear shape functions times the 3-D green’s function or its gradient on a plane triangle,” IEEE Trans. Antenn. Propag.41(10), 1448–1455 (1993).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antenn. Propag.57(1), 176–187 (2009).

[CrossRef]

J. R. Mautz and R. F. Harrington, “Electromagnetic scattering from a homogeneous material body of revolution,” Arch. Elektr. Uebertrag.33, 71–80 (1979).

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).

[CrossRef]
[PubMed]

R. E. Hodges and Y. Rahmat-Samii, “The evaluation of MFIE integrals with the use of vector triangle basis functions,” Microw. Opt. Technol. Lett.14(1), 9–14 (1997).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40(6), RS6002 (2005).

[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).

[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).

[CrossRef]
[PubMed]

J. Zhou, Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, “Three-dimensional photonic band gap structure of a polymer-metal composite,” Appl. Phys. Lett.76, 3337–3339 (2000).

J. Zhou, Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, “Three-dimensional photonic band gap structure of a polymer-metal composite,” Appl. Phys. Lett.76, 3337–3339 (2000).

Y. A. Liu and W. C. Chew, “Stability of surface integral equation for left-handed materials,” IEEE Trans. Microw. Antennas Propag.1(1), 84–89 (2007).

[CrossRef]

T. W. Lloyd, J. M. Song, and M. Yang, “Numerical study of surface integral formulations for low-contrast objects,” IEEE Antennas Wirel. Propag. Lett.4(1), 482–485 (2005).

[CrossRef]

B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A27(10), 2261–2271 (2010).

[CrossRef]
[PubMed]

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26(4), 732–740 (2009).

[CrossRef]
[PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).

[CrossRef]
[PubMed]

J. R. Mautz and R. F. Harrington, “Electromagnetic scattering from a homogeneous material body of revolution,” Arch. Elektr. Uebertrag.33, 71–80 (1979).

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).

[CrossRef]
[PubMed]

M. Salaün, B. Corbett, S. B. Newcomb, and M. E. Pemble, “Fabrication and characterization of three-dimensional silver/air inverted opal photonic crystals,” J. Mater. Chem.20(36), 7870–7874 (2010).

[CrossRef]

J. Zhou, Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, “Three-dimensional photonic band gap structure of a polymer-metal composite,” Appl. Phys. Lett.76, 3337–3339 (2000).

L. Novotny and N. F. van Hulst, “Antennas for Light,” Nat. Photonics5(2), 83–90 (2011).

[CrossRef]

M. G. Araújo, J. M. Taboada, J. Rivero, and F. Obelleiro, “Comparison of Surface Integral Equations for Left-Handed Materials,” Prog. Electromagn. Res.118, 425–440 (2011).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28(7), 1341–1348 (2011).

[CrossRef]
[PubMed]

M. Salaün, B. Corbett, S. B. Newcomb, and M. E. Pemble, “Fabrication and characterization of three-dimensional silver/air inverted opal photonic crystals,” J. Mater. Chem.20(36), 7870–7874 (2010).

[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).

[CrossRef]
[PubMed]

J. Zhou, Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, “Three-dimensional photonic band gap structure of a polymer-metal composite,” Appl. Phys. Lett.76, 3337–3339 (2000).

R. E. Hodges and Y. Rahmat-Samii, “The evaluation of MFIE integrals with the use of vector triangle basis functions,” Microw. Opt. Technol. Lett.14(1), 9–14 (1997).

[CrossRef]

D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, “Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antenn. Propag.32(3), 276–281 (1984).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag.30(3), 409–418 (1982).

[CrossRef]

M. G. Araújo, J. M. Taboada, J. Rivero, and F. Obelleiro, “Comparison of Surface Integral Equations for Left-Handed Materials,” Prog. Electromagn. Res.118, 425–440 (2011).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28(7), 1341–1348 (2011).

[CrossRef]
[PubMed]

Y. Saad and M. Schultz, “Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAMJ. Sci. Statist. Comput.7(3), 856–869 (1986).

[CrossRef]

M. Salaün, B. Corbett, S. B. Newcomb, and M. E. Pemble, “Fabrication and characterization of three-dimensional silver/air inverted opal photonic crystals,” J. Mater. Chem.20(36), 7870–7874 (2010).

[CrossRef]

D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, “Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antenn. Propag.32(3), 276–281 (1984).

[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).

[CrossRef]
[PubMed]

Y. Saad and M. Schultz, “Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAMJ. Sci. Statist. Comput.7(3), 856–869 (1986).

[CrossRef]

T. W. Lloyd, J. M. Song, and M. Yang, “Numerical study of surface integral formulations for low-contrast objects,” IEEE Antennas Wirel. Propag. Lett.4(1), 482–485 (2005).

[CrossRef]

M. G. Araújo, J. M. Taboada, J. Rivero, and F. Obelleiro, “Comparison of Surface Integral Equations for Left-Handed Materials,” Prog. Electromagn. Res.118, 425–440 (2011).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28(7), 1341–1348 (2011).

[CrossRef]
[PubMed]

A. Taflove and M. E. Brodwin, “Numerical solution of steadystate electromagnetic scattering problems using the timedependent Maxwell’s equations,” IEEE Trans. Microw. Theory Tech.23(8), 623–630 (1975).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Improving conditioning of electromagnetic surface integral equations using normalized field quantities,” IEEE Trans. Antenn. Propag.55(1), 178–185 (2007).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40(6), RS6002 (2005).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects,” IEEE Trans. Antenn. Propag.53(10), 3316–3323 (2005).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antenn. Propag.53(3), 1168–1173 (2005).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Calculation of CFIE impedance matrix elements with RWG andn^× RWG functions,” IEEE Trans. Antenn. Propag.51(8), 1837–1846 (2003).

[CrossRef]

L. Novotny and N. F. van Hulst, “Antennas for Light,” Nat. Photonics5(2), 83–90 (2011).

[CrossRef]

T. Weiland, “A discretization method for the solution of Maxwell’s equations for six-component fields,” Arch. Elektron. Übertragungstech.31, 116–120 (1977).

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).

[CrossRef]
[PubMed]

D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, “Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antenn. Propag.32(3), 276–281 (1984).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag.30(3), 409–418 (1982).

[CrossRef]

T. W. Lloyd, J. M. Song, and M. Yang, “Numerical study of surface integral formulations for low-contrast objects,” IEEE Antennas Wirel. Propag. Lett.4(1), 482–485 (2005).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Improving conditioning of electromagnetic surface integral equations using normalized field quantities,” IEEE Trans. Antenn. Propag.55(1), 178–185 (2007).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antenn. Propag.53(3), 1168–1173 (2005).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects,” IEEE Trans. Antenn. Propag.53(10), 3316–3323 (2005).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40(6), RS6002 (2005).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Calculation of CFIE impedance matrix elements with RWG andn^× RWG functions,” IEEE Trans. Antenn. Propag.51(8), 1837–1846 (2003).

[CrossRef]

J. Zhou, Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, “Three-dimensional photonic band gap structure of a polymer-metal composite,” Appl. Phys. Lett.76, 3337–3339 (2000).

J. Zhou, Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, “Three-dimensional photonic band gap structure of a polymer-metal composite,” Appl. Phys. Lett.76, 3337–3339 (2000).

J. Zhou, Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, “Three-dimensional photonic band gap structure of a polymer-metal composite,” Appl. Phys. Lett.76, 3337–3339 (2000).

J. Zhou, Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, “Three-dimensional photonic band gap structure of a polymer-metal composite,” Appl. Phys. Lett.76, 3337–3339 (2000).

J. R. Mautz and R. F. Harrington, “Electromagnetic scattering from a homogeneous material body of revolution,” Arch. Elektr. Uebertrag.33, 71–80 (1979).

T. Weiland, “A discretization method for the solution of Maxwell’s equations for six-component fields,” Arch. Elektron. Übertragungstech.31, 116–120 (1977).

Ö. Ergül, “Fast and Accurate Analysis of Homogenized Metamaterials With the Surface Integral Equations and the Multilevel Fast Multipole Algorithm,” IEEE Antennas Wirel. Propag. Lett.10, 1286–1289 (2011).

[CrossRef]

T. W. Lloyd, J. M. Song, and M. Yang, “Numerical study of surface integral formulations for low-contrast objects,” IEEE Antennas Wirel. Propag. Lett.4(1), 482–485 (2005).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Improving conditioning of electromagnetic surface integral equations using normalized field quantities,” IEEE Trans. Antenn. Propag.55(1), 178–185 (2007).

[CrossRef]

D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, “Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antenn. Propag.32(3), 276–281 (1984).

[CrossRef]

R. D. Graglia, “On the numerical integration of the linear shape functions times the 3-D green’s function or its gradient on a plane triangle,” IEEE Trans. Antenn. Propag.41(10), 1448–1455 (1993).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Calculation of CFIE impedance matrix elements with RWG andn^× RWG functions,” IEEE Trans. Antenn. Propag.51(8), 1837–1846 (2003).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antenn. Propag.57(1), 176–187 (2009).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects,” IEEE Trans. Antenn. Propag.53(10), 3316–3323 (2005).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antenn. Propag.53(3), 1168–1173 (2005).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag.30(3), 409–418 (1982).

[CrossRef]

Y. A. Liu and W. C. Chew, “Stability of surface integral equation for left-handed materials,” IEEE Trans. Microw. Antennas Propag.1(1), 84–89 (2007).

[CrossRef]

A. Taflove and M. E. Brodwin, “Numerical solution of steadystate electromagnetic scattering problems using the timedependent Maxwell’s equations,” IEEE Trans. Microw. Theory Tech.23(8), 623–630 (1975).

[CrossRef]

M. Salaün, B. Corbett, S. B. Newcomb, and M. E. Pemble, “Fabrication and characterization of three-dimensional silver/air inverted opal photonic crystals,” J. Mater. Chem.20(36), 7870–7874 (2010).

[CrossRef]

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26(4), 732–740 (2009).

[CrossRef]
[PubMed]

B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A27(10), 2261–2271 (2010).

[CrossRef]
[PubMed]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28(7), 1341–1348 (2011).

[CrossRef]
[PubMed]

R. E. Hodges and Y. Rahmat-Samii, “The evaluation of MFIE integrals with the use of vector triangle basis functions,” Microw. Opt. Technol. Lett.14(1), 9–14 (1997).

[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).

[CrossRef]
[PubMed]

L. Novotny and N. F. van Hulst, “Antennas for Light,” Nat. Photonics5(2), 83–90 (2011).

[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).

[CrossRef]

M. G. Araújo, J. M. Taboada, J. Rivero, and F. Obelleiro, “Comparison of Surface Integral Equations for Left-Handed Materials,” Prog. Electromagn. Res.118, 425–440 (2011).

[CrossRef]

P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40(6), RS6002 (2005).

[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).

[CrossRef]
[PubMed]

Y. Saad and M. Schultz, “Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAMJ. Sci. Statist. Comput.7(3), 856–869 (1986).

[CrossRef]

R. F. Harrington, Field Computation by Moment Method (IEEE Press, 1993).

A. Ishimaru, Electromagnetic Wave Propagation, Radiation and Scattering (Prentice-Hall, 1991).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

S. Kawata, ed., Near-Field Optis and Surface Plasmon Polaritons (Springer, 2010).

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Physics Optics arXiv:1103.1568v1, (2011).

C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves (Springer, 1969).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).