Abstract

Energy-transfer-coupled polymeric composites with donors of two-absorbing dyes and acceptors of polymer gain medium are introduced for up-converted laser applications. The two-photon pumped hybrid polymer lasers show significant performance improvement with nearly 10 times reduction of lasing threshold and over 100 times extension of lifespan.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
    [CrossRef] [PubMed]
  2. G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature415(6873), 767–770 (2002).
    [CrossRef] [PubMed]
  3. C. Zhang, C.-L. Zou, Y. L. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y. S. Zhao, and J. Yao, “Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators,” J. Am. Chem. Soc.133(19), 7276–7279 (2011).
    [CrossRef] [PubMed]
  4. G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett.68(25), 3549–3551 (1996).
    [CrossRef]
  5. G. S. He, Q. Zheng, P. N. Prasad, J. G. Grote, and F. K. Hopkins, “Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex,” Opt. Lett.31(3), 359–361 (2006).
    [CrossRef] [PubMed]
  6. G. S. He, R. Helgeson, T. C. Lin, Q. D. Zheng, F. Wudl, and P. N. Prasad, “One-, two-, and three-photon pumped lasing in a novel liquid dye salt system,” IEEE J. Quantum Electron.39(8), 1003–1008 (2003).
    [CrossRef]
  7. C. Bauer, B. Schnabel, E.-B. Kley, U. Scherf, H. Giessen, and R. F. Mahrt, “Two-photon pumped lasing from two-dimensional photonic bandgap structure with polymeric gain material,” Adv. Mater. (Deerfield Beach Fla.)14(9), 673–676 (2002).
    [CrossRef]
  8. G. Tsiminis, A. Ruseckas, I. D. W. Samuel, and G. A. Turnbull, “A two-photon pumped polyfluorene laser,” Appl. Phys. Lett.94(25), 253304 (2009).
    [CrossRef]
  9. F. Scotognella, D. P. Puzzo, M. Zavelaini-Rossi, J. Clark, M. Sebastian, G. A. Ozin, and G. Lanzani, “Two-photon poly(phenylenevinylene) DFB laser,” Chem. Mater.23(3), 805–809 (2011).
    [CrossRef]
  10. C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, and H. Deng, “Multiphoton route to ZnO nanowire lasers,” Opt. Lett.31(22), 3345–3347 (2006).
    [CrossRef] [PubMed]
  11. C. F. Zhang, F. Zhang, T. Zhu, A. Cheng, J. Xu, Q. Zhang, S. E. Mohney, R. H. Henderson, and Y. A. Wang, “Two-photon-pumped lasing from colloidal nanocrystal quantum dots,” Opt. Lett.33(21), 2437–2439 (2008).
    [CrossRef] [PubMed]
  12. C. F. Zhang, F. Zhang, A. Cheng, B. Kimball, A. Y. Wang, and J. Xu, “Frequency up-converted lasing of nanocrystal quantum dots in microbeads,” Appl. Phys. Lett.95(18), 183109 (2009).
    [CrossRef]
  13. C. F. Zhang, F. Zhang, X. W. Sun, Y. Yang, J. Wang, and J. Xu, “Frequency-upconverted whispering-gallery-mode lasing in ZnO hexagonal nanodisks,” Opt. Lett.34(21), 3349–3351 (2009).
    [CrossRef] [PubMed]
  14. G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, “Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle,” Appl. Phys. Lett.94(5), 051106 (2009).
    [CrossRef]
  15. G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett.67(25), 3703–3705 (1995).
    [CrossRef]
  16. J. J. Jasieniak, I. Fortunati, S. Gardin, R. Signorini, R. Bozio, A. Martucci, and P. Mulvaney, “Highly efficient amplified spontaneous emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping,” Adv. Mater. (Deerfield Beach Fla.)20(1), 69–73 (2008).
    [CrossRef]
  17. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
    [CrossRef] [PubMed]
  18. D. Moses, “High quantum efficiency luminescence from a conducting polymer in solution: a novel polymer laser dye,” Appl. Phys. Lett.60(26), 3215–3216 (1992).
    [CrossRef]
  19. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
    [CrossRef]
  20. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugate-polymer microcavities,” Nature382(6593), 695–697 (1996).
    [CrossRef]
  21. M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. (Deerfield Beach Fla.)12(22), 1655–1668 (2000).
    [CrossRef]
  22. V. G. Kozlov, V. Bulovic, P. E. Burroughs, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
    [CrossRef]
  23. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
    [CrossRef] [PubMed]
  24. H. Kim, N. Schulte, G. Zhou, K. Mullen, and F. Laquai, “A high gain and high charge carrier mobility indenofluorene-phenathrene copolymer for light amplication and organic lasing,” Adv. Mater. (Deerfield Beach Fla.)23(7), 894–897 (2011).
    [CrossRef]
  25. P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. (Deerfield Beach Fla.)23(7), 869–872 (2011).
    [CrossRef]
  26. A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express14(20), 9211–9216 (2006).
    [CrossRef] [PubMed]
  27. A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007).
    [CrossRef]
  28. Th. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys.437(1-2), 55–75 (1948).
    [CrossRef]
  29. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer, New York, 1999).
  30. I. B. Martini, A. D. Smith, and B. J. Schwartz, “Exciton-exciton annihilation and the production of interchain species in conjugated polymer films: comparing the ultrafast stimulated emission and photoluminescence dynamics of MEH-PPV,” Phys. Rev. B69(3), 035204 (2004).
    [CrossRef]
  31. S. C. Jeoung, D. H. Jeong, T. Ahn, J.-Y. Han, M.-S. Jang, H.-K. Shim, and D. Kim, “Direct probe of spectrally narrowed emission from π-conjugated polymers: the elucidation for spectral line narrowing,” J. Phys. Chem. B106(35), 8921–8927 (2002).
    [CrossRef]
  32. J.-W. Yu, J. K. Kim, D. Y. Kim, C. Kim, N. W. Song, and D. Kim, “Prediction of efficient energy transfer in emissive polymer blends based on Föster radius and the excited state lifetime of acceptors,” Curr. Appl. Phys.6(1), 59–65 (2006).
    [CrossRef]
  33. V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Foester energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
    [CrossRef]
  34. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B247, 774–788 (2010).
  35. R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
    [CrossRef]
  36. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434(7035), 876–879 (2005).
    [CrossRef] [PubMed]
  37. L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
    [CrossRef] [PubMed]

2011

C. Zhang, C.-L. Zou, Y. L. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y. S. Zhao, and J. Yao, “Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators,” J. Am. Chem. Soc.133(19), 7276–7279 (2011).
[CrossRef] [PubMed]

F. Scotognella, D. P. Puzzo, M. Zavelaini-Rossi, J. Clark, M. Sebastian, G. A. Ozin, and G. Lanzani, “Two-photon poly(phenylenevinylene) DFB laser,” Chem. Mater.23(3), 805–809 (2011).
[CrossRef]

H. Kim, N. Schulte, G. Zhou, K. Mullen, and F. Laquai, “A high gain and high charge carrier mobility indenofluorene-phenathrene copolymer for light amplication and organic lasing,” Adv. Mater. (Deerfield Beach Fla.)23(7), 894–897 (2011).
[CrossRef]

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. (Deerfield Beach Fla.)23(7), 869–872 (2011).
[CrossRef]

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

2010

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B247, 774–788 (2010).

2009

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

C. F. Zhang, F. Zhang, X. W. Sun, Y. Yang, J. Wang, and J. Xu, “Frequency-upconverted whispering-gallery-mode lasing in ZnO hexagonal nanodisks,” Opt. Lett.34(21), 3349–3351 (2009).
[CrossRef] [PubMed]

C. F. Zhang, F. Zhang, A. Cheng, B. Kimball, A. Y. Wang, and J. Xu, “Frequency up-converted lasing of nanocrystal quantum dots in microbeads,” Appl. Phys. Lett.95(18), 183109 (2009).
[CrossRef]

G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, “Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle,” Appl. Phys. Lett.94(5), 051106 (2009).
[CrossRef]

G. Tsiminis, A. Ruseckas, I. D. W. Samuel, and G. A. Turnbull, “A two-photon pumped polyfluorene laser,” Appl. Phys. Lett.94(25), 253304 (2009).
[CrossRef]

2008

J. J. Jasieniak, I. Fortunati, S. Gardin, R. Signorini, R. Bozio, A. Martucci, and P. Mulvaney, “Highly efficient amplified spontaneous emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping,” Adv. Mater. (Deerfield Beach Fla.)20(1), 69–73 (2008).
[CrossRef]

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

C. F. Zhang, F. Zhang, T. Zhu, A. Cheng, J. Xu, Q. Zhang, S. E. Mohney, R. H. Henderson, and Y. A. Wang, “Two-photon-pumped lasing from colloidal nanocrystal quantum dots,” Opt. Lett.33(21), 2437–2439 (2008).
[CrossRef] [PubMed]

2007

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007).
[CrossRef]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

2006

2005

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434(7035), 876–879 (2005).
[CrossRef] [PubMed]

2004

I. B. Martini, A. D. Smith, and B. J. Schwartz, “Exciton-exciton annihilation and the production of interchain species in conjugated polymer films: comparing the ultrafast stimulated emission and photoluminescence dynamics of MEH-PPV,” Phys. Rev. B69(3), 035204 (2004).
[CrossRef]

2003

G. S. He, R. Helgeson, T. C. Lin, Q. D. Zheng, F. Wudl, and P. N. Prasad, “One-, two-, and three-photon pumped lasing in a novel liquid dye salt system,” IEEE J. Quantum Electron.39(8), 1003–1008 (2003).
[CrossRef]

2002

C. Bauer, B. Schnabel, E.-B. Kley, U. Scherf, H. Giessen, and R. F. Mahrt, “Two-photon pumped lasing from two-dimensional photonic bandgap structure with polymeric gain material,” Adv. Mater. (Deerfield Beach Fla.)14(9), 673–676 (2002).
[CrossRef]

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature415(6873), 767–770 (2002).
[CrossRef] [PubMed]

S. C. Jeoung, D. H. Jeong, T. Ahn, J.-Y. Han, M.-S. Jang, H.-K. Shim, and D. Kim, “Direct probe of spectrally narrowed emission from π-conjugated polymers: the elucidation for spectral line narrowing,” J. Phys. Chem. B106(35), 8921–8927 (2002).
[CrossRef]

2000

M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. (Deerfield Beach Fla.)12(22), 1655–1668 (2000).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

1998

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Foester energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

1997

V. G. Kozlov, V. Bulovic, P. E. Burroughs, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

1996

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugate-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett.68(25), 3549–3551 (1996).
[CrossRef]

1995

G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett.67(25), 3703–3705 (1995).
[CrossRef]

1992

D. Moses, “High quantum efficiency luminescence from a conducting polymer in solution: a novel polymer laser dye,” Appl. Phys. Lett.60(26), 3215–3216 (1992).
[CrossRef]

1948

Th. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys.437(1-2), 55–75 (1948).
[CrossRef]

Ahn, T.

S. C. Jeoung, D. H. Jeong, T. Ahn, J.-Y. Han, M.-S. Jang, H.-K. Shim, and D. Kim, “Direct probe of spectrally narrowed emission from π-conjugated polymers: the elucidation for spectral line narrowing,” J. Phys. Chem. B106(35), 8921–8927 (2002).
[CrossRef]

Andersson, M. R.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Baldo, M.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Foester energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Bauer, C.

C. Bauer, B. Schnabel, E.-B. Kley, U. Scherf, H. Giessen, and R. F. Mahrt, “Two-photon pumped lasing from two-dimensional photonic bandgap structure with polymeric gain material,” Adv. Mater. (Deerfield Beach Fla.)14(9), 673–676 (2002).
[CrossRef]

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Bhawalkar, J. D.

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett.68(25), 3549–3551 (1996).
[CrossRef]

G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett.67(25), 3703–3705 (1995).
[CrossRef]

Bozio, R.

J. J. Jasieniak, I. Fortunati, S. Gardin, R. Signorini, R. Bozio, A. Martucci, and P. Mulvaney, “Highly efficient amplified spontaneous emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping,” Adv. Mater. (Deerfield Beach Fla.)20(1), 69–73 (2008).
[CrossRef]

Bulovic, V.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434(7035), 876–879 (2005).
[CrossRef] [PubMed]

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Foester energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burroughs, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

Burroughs, P. E.

V. G. Kozlov, V. Bulovic, P. E. Burroughs, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

Burrows, P. E.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Foester energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Cheng, A.

C. F. Zhang, F. Zhang, A. Cheng, B. Kimball, A. Y. Wang, and J. Xu, “Frequency up-converted lasing of nanocrystal quantum dots in microbeads,” Appl. Phys. Lett.95(18), 183109 (2009).
[CrossRef]

C. F. Zhang, F. Zhang, T. Zhu, A. Cheng, J. Xu, Q. Zhang, S. E. Mohney, R. H. Henderson, and Y. A. Wang, “Two-photon-pumped lasing from colloidal nanocrystal quantum dots,” Opt. Lett.33(21), 2437–2439 (2008).
[CrossRef] [PubMed]

Clapp, A. R.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007).
[CrossRef]

Clark, J.

F. Scotognella, D. P. Puzzo, M. Zavelaini-Rossi, J. Clark, M. Sebastian, G. A. Ozin, and G. Lanzani, “Two-photon poly(phenylenevinylene) DFB laser,” Chem. Mater.23(3), 805–809 (2011).
[CrossRef]

Cui, Y. P.

G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, “Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle,” Appl. Phys. Lett.94(5), 051106 (2009).
[CrossRef]

Dawson, P. E.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007).
[CrossRef]

Delehanty, J. B.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007).
[CrossRef]

Deng, H.

Denton, G. J.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugate-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

Diaz-Garcia, M. A.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Dong, Z. W.

Eisler, H.-J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Fisher, B. R.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007).
[CrossRef]

Forrest, S. R.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Foester energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burroughs, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

Förster, Th.

Th. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys.437(1-2), 55–75 (1948).
[CrossRef]

Fortunati, I.

J. J. Jasieniak, I. Fortunati, S. Gardin, R. Signorini, R. Bozio, A. Martucci, and P. Mulvaney, “Highly efficient amplified spontaneous emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping,” Adv. Mater. (Deerfield Beach Fla.)20(1), 69–73 (2008).
[CrossRef]

Friend, R. H.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugate-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

Gardin, S.

J. J. Jasieniak, I. Fortunati, S. Gardin, R. Signorini, R. Bozio, A. Martucci, and P. Mulvaney, “Highly efficient amplified spontaneous emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping,” Adv. Mater. (Deerfield Beach Fla.)20(1), 69–73 (2008).
[CrossRef]

Gargas, D.

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Giessen, H.

C. Bauer, B. Schnabel, E.-B. Kley, U. Scherf, H. Giessen, and R. F. Mahrt, “Two-photon pumped lasing from two-dimensional photonic bandgap structure with polymeric gain material,” Adv. Mater. (Deerfield Beach Fla.)14(9), 673–676 (2002).
[CrossRef]

Görrn, P.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. (Deerfield Beach Fla.)23(7), 869–872 (2011).
[CrossRef]

Grote, J. G.

Han, J.-Y.

S. C. Jeoung, D. H. Jeong, T. Ahn, J.-Y. Han, M.-S. Jang, H.-K. Shim, and D. Kim, “Direct probe of spectrally narrowed emission from π-conjugated polymers: the elucidation for spectral line narrowing,” J. Phys. Chem. B106(35), 8921–8927 (2002).
[CrossRef]

Han, Z.-F.

C. Zhang, C.-L. Zou, Y. L. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y. S. Zhao, and J. Yao, “Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators,” J. Am. Chem. Soc.133(19), 7276–7279 (2011).
[CrossRef] [PubMed]

Hao, R.

C. Zhang, C.-L. Zou, Y. L. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y. S. Zhao, and J. Yao, “Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators,” J. Am. Chem. Soc.133(19), 7276–7279 (2011).
[CrossRef] [PubMed]

He, G. S.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

G. S. He, Q. Zheng, P. N. Prasad, J. G. Grote, and F. K. Hopkins, “Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex,” Opt. Lett.31(3), 359–361 (2006).
[CrossRef] [PubMed]

G. S. He, R. Helgeson, T. C. Lin, Q. D. Zheng, F. Wudl, and P. N. Prasad, “One-, two-, and three-photon pumped lasing in a novel liquid dye salt system,” IEEE J. Quantum Electron.39(8), 1003–1008 (2003).
[CrossRef]

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature415(6873), 767–770 (2002).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett.68(25), 3549–3551 (1996).
[CrossRef]

G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett.67(25), 3703–3705 (1995).
[CrossRef]

He, L. N.

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Heeger, A. J.

M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. (Deerfield Beach Fla.)12(22), 1655–1668 (2000).
[CrossRef]

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Helgeson, R.

G. S. He, R. Helgeson, T. C. Lin, Q. D. Zheng, F. Wudl, and P. N. Prasad, “One-, two-, and three-photon pumped lasing in a novel liquid dye salt system,” IEEE J. Quantum Electron.39(8), 1003–1008 (2003).
[CrossRef]

Henderson, R. H.

Hide, F.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Hopkins, F. K.

Jang, M.-S.

S. C. Jeoung, D. H. Jeong, T. Ahn, J.-Y. Han, M.-S. Jang, H.-K. Shim, and D. Kim, “Direct probe of spectrally narrowed emission from π-conjugated polymers: the elucidation for spectral line narrowing,” J. Phys. Chem. B106(35), 8921–8927 (2002).
[CrossRef]

Jasieniak, J. J.

J. J. Jasieniak, I. Fortunati, S. Gardin, R. Signorini, R. Bozio, A. Martucci, and P. Mulvaney, “Highly efficient amplified spontaneous emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping,” Adv. Mater. (Deerfield Beach Fla.)20(1), 69–73 (2008).
[CrossRef]

Jeong, D. H.

S. C. Jeoung, D. H. Jeong, T. Ahn, J.-Y. Han, M.-S. Jang, H.-K. Shim, and D. Kim, “Direct probe of spectrally narrowed emission from π-conjugated polymers: the elucidation for spectral line narrowing,” J. Phys. Chem. B106(35), 8921–8927 (2002).
[CrossRef]

Jeoung, S. C.

S. C. Jeoung, D. H. Jeong, T. Ahn, J.-Y. Han, M.-S. Jang, H.-K. Shim, and D. Kim, “Direct probe of spectrally narrowed emission from π-conjugated polymers: the elucidation for spectral line narrowing,” J. Phys. Chem. B106(35), 8921–8927 (2002).
[CrossRef]

Khalfin, V. B.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Foester energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Kim, C.

J.-W. Yu, J. K. Kim, D. Y. Kim, C. Kim, N. W. Song, and D. Kim, “Prediction of efficient energy transfer in emissive polymer blends based on Föster radius and the excited state lifetime of acceptors,” Curr. Appl. Phys.6(1), 59–65 (2006).
[CrossRef]

Kim, D.

J.-W. Yu, J. K. Kim, D. Y. Kim, C. Kim, N. W. Song, and D. Kim, “Prediction of efficient energy transfer in emissive polymer blends based on Föster radius and the excited state lifetime of acceptors,” Curr. Appl. Phys.6(1), 59–65 (2006).
[CrossRef]

S. C. Jeoung, D. H. Jeong, T. Ahn, J.-Y. Han, M.-S. Jang, H.-K. Shim, and D. Kim, “Direct probe of spectrally narrowed emission from π-conjugated polymers: the elucidation for spectral line narrowing,” J. Phys. Chem. B106(35), 8921–8927 (2002).
[CrossRef]

Kim, D. Y.

J.-W. Yu, J. K. Kim, D. Y. Kim, C. Kim, N. W. Song, and D. Kim, “Prediction of efficient energy transfer in emissive polymer blends based on Föster radius and the excited state lifetime of acceptors,” Curr. Appl. Phys.6(1), 59–65 (2006).
[CrossRef]

Kim, H.

H. Kim, N. Schulte, G. Zhou, K. Mullen, and F. Laquai, “A high gain and high charge carrier mobility indenofluorene-phenathrene copolymer for light amplication and organic lasing,” Adv. Mater. (Deerfield Beach Fla.)23(7), 894–897 (2011).
[CrossRef]

Kim, J. K.

J.-W. Yu, J. K. Kim, D. Y. Kim, C. Kim, N. W. Song, and D. Kim, “Prediction of efficient energy transfer in emissive polymer blends based on Föster radius and the excited state lifetime of acceptors,” Curr. Appl. Phys.6(1), 59–65 (2006).
[CrossRef]

Kim, W.

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Kimball, B.

C. F. Zhang, F. Zhang, A. Cheng, B. Kimball, A. Y. Wang, and J. Xu, “Frequency up-converted lasing of nanocrystal quantum dots in microbeads,” Appl. Phys. Lett.95(18), 183109 (2009).
[CrossRef]

Kley, E.-B.

C. Bauer, B. Schnabel, E.-B. Kley, U. Scherf, H. Giessen, and R. F. Mahrt, “Two-photon pumped lasing from two-dimensional photonic bandgap structure with polymeric gain material,” Adv. Mater. (Deerfield Beach Fla.)14(9), 673–676 (2002).
[CrossRef]

Klimov, V. I.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Kowalsky, W.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. (Deerfield Beach Fla.)23(7), 869–872 (2011).
[CrossRef]

Kozlov, V. G.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Foester energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burroughs, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

Krauss, T. F.

Lanzani, G.

F. Scotognella, D. P. Puzzo, M. Zavelaini-Rossi, J. Clark, M. Sebastian, G. A. Ozin, and G. Lanzani, “Two-photon poly(phenylenevinylene) DFB laser,” Chem. Mater.23(3), 805–809 (2011).
[CrossRef]

Laquai, F.

H. Kim, N. Schulte, G. Zhou, K. Mullen, and F. Laquai, “A high gain and high charge carrier mobility indenofluorene-phenathrene copolymer for light amplication and organic lasing,” Adv. Mater. (Deerfield Beach Fla.)23(7), 894–897 (2011).
[CrossRef]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Lehnhardt, M.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. (Deerfield Beach Fla.)23(7), 869–872 (2011).
[CrossRef]

Lin, T. C.

G. S. He, R. Helgeson, T. C. Lin, Q. D. Zheng, F. Wudl, and P. N. Prasad, “One-, two-, and three-photon pumped lasing in a novel liquid dye salt system,” IEEE J. Quantum Electron.39(8), 1003–1008 (2003).
[CrossRef]

Lin, T.-C.

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature415(6873), 767–770 (2002).
[CrossRef] [PubMed]

Lv, C. G.

G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, “Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle,” Appl. Phys. Lett.94(5), 051106 (2009).
[CrossRef]

Madigan, C. F.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434(7035), 876–879 (2005).
[CrossRef] [PubMed]

Mahrt, R. F.

C. Bauer, B. Schnabel, E.-B. Kley, U. Scherf, H. Giessen, and R. F. Mahrt, “Two-photon pumped lasing from two-dimensional photonic bandgap structure with polymeric gain material,” Adv. Mater. (Deerfield Beach Fla.)14(9), 673–676 (2002).
[CrossRef]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Markowicz, P. P.

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature415(6873), 767–770 (2002).
[CrossRef] [PubMed]

Martini, I. B.

I. B. Martini, A. D. Smith, and B. J. Schwartz, “Exciton-exciton annihilation and the production of interchain species in conjugated polymer films: comparing the ultrafast stimulated emission and photoluminescence dynamics of MEH-PPV,” Phys. Rev. B69(3), 035204 (2004).
[CrossRef]

Martucci, A.

J. J. Jasieniak, I. Fortunati, S. Gardin, R. Signorini, R. Bozio, A. Martucci, and P. Mulvaney, “Highly efficient amplified spontaneous emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping,” Adv. Mater. (Deerfield Beach Fla.)20(1), 69–73 (2008).
[CrossRef]

Mattoussi, H.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007).
[CrossRef]

McGehee, M. D.

M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. (Deerfield Beach Fla.)12(22), 1655–1668 (2000).
[CrossRef]

Medintz, I. L.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007).
[CrossRef]

Melinger, J. S.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007).
[CrossRef]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Mohney, S. E.

Moses, D.

D. Moses, “High quantum efficiency luminescence from a conducting polymer in solution: a novel polymer laser dye,” Appl. Phys. Lett.60(26), 3215–3216 (1992).
[CrossRef]

Mullen, K.

H. Kim, N. Schulte, G. Zhou, K. Mullen, and F. Laquai, “A high gain and high charge carrier mobility indenofluorene-phenathrene copolymer for light amplication and organic lasing,” Adv. Mater. (Deerfield Beach Fla.)23(7), 894–897 (2011).
[CrossRef]

Mulvaney, P.

J. J. Jasieniak, I. Fortunati, S. Gardin, R. Signorini, R. Bozio, A. Martucci, and P. Mulvaney, “Highly efficient amplified spontaneous emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping,” Adv. Mater. (Deerfield Beach Fla.)20(1), 69–73 (2008).
[CrossRef]

Ning, C. Z.

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B247, 774–788 (2010).

O’ Faolain, L.

O’Rourke, B.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007).
[CrossRef]

Ozdemir, S. K.

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Ozin, G. A.

F. Scotognella, D. P. Puzzo, M. Zavelaini-Rossi, J. Clark, M. Sebastian, G. A. Ozin, and G. Lanzani, “Two-photon poly(phenylenevinylene) DFB laser,” Chem. Mater.23(3), 805–809 (2011).
[CrossRef]

Park, C. K.

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett.68(25), 3549–3551 (1996).
[CrossRef]

Parthasarathy, G.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Foester energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Pei, Q.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Pons, T.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007).
[CrossRef]

Prasad, P. N.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

G. S. He, Q. Zheng, P. N. Prasad, J. G. Grote, and F. K. Hopkins, “Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex,” Opt. Lett.31(3), 359–361 (2006).
[CrossRef] [PubMed]

G. S. He, R. Helgeson, T. C. Lin, Q. D. Zheng, F. Wudl, and P. N. Prasad, “One-, two-, and three-photon pumped lasing in a novel liquid dye salt system,” IEEE J. Quantum Electron.39(8), 1003–1008 (2003).
[CrossRef]

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature415(6873), 767–770 (2002).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett.68(25), 3549–3551 (1996).
[CrossRef]

G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett.67(25), 3703–3705 (1995).
[CrossRef]

Puzzo, D. P.

F. Scotognella, D. P. Puzzo, M. Zavelaini-Rossi, J. Clark, M. Sebastian, G. A. Ozin, and G. Lanzani, “Two-photon poly(phenylenevinylene) DFB laser,” Chem. Mater.23(3), 805–809 (2011).
[CrossRef]

Qian, S. X.

Ribierre, J.-C.

Riedl, T.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. (Deerfield Beach Fla.)23(7), 869–872 (2011).
[CrossRef]

Rose, A.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434(7035), 876–879 (2005).
[CrossRef] [PubMed]

Ruseckas, A.

G. Tsiminis, A. Ruseckas, I. D. W. Samuel, and G. A. Turnbull, “A two-photon pumped polyfluorene laser,” Appl. Phys. Lett.94(25), 253304 (2009).
[CrossRef]

Samuel, I. D. W.

G. Tsiminis, A. Ruseckas, I. D. W. Samuel, and G. A. Turnbull, “A two-photon pumped polyfluorene laser,” Appl. Phys. Lett.94(25), 253304 (2009).
[CrossRef]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

Scherf, U.

C. Bauer, B. Schnabel, E.-B. Kley, U. Scherf, H. Giessen, and R. F. Mahrt, “Two-photon pumped lasing from two-dimensional photonic bandgap structure with polymeric gain material,” Adv. Mater. (Deerfield Beach Fla.)14(9), 673–676 (2002).
[CrossRef]

Schnabel, B.

C. Bauer, B. Schnabel, E.-B. Kley, U. Scherf, H. Giessen, and R. F. Mahrt, “Two-photon pumped lasing from two-dimensional photonic bandgap structure with polymeric gain material,” Adv. Mater. (Deerfield Beach Fla.)14(9), 673–676 (2002).
[CrossRef]

Schulte, N.

H. Kim, N. Schulte, G. Zhou, K. Mullen, and F. Laquai, “A high gain and high charge carrier mobility indenofluorene-phenathrene copolymer for light amplication and organic lasing,” Adv. Mater. (Deerfield Beach Fla.)23(7), 894–897 (2011).
[CrossRef]

Schwartz, B. J.

I. B. Martini, A. D. Smith, and B. J. Schwartz, “Exciton-exciton annihilation and the production of interchain species in conjugated polymer films: comparing the ultrafast stimulated emission and photoluminescence dynamics of MEH-PPV,” Phys. Rev. B69(3), 035204 (2004).
[CrossRef]

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

Scotognella, F.

F. Scotognella, D. P. Puzzo, M. Zavelaini-Rossi, J. Clark, M. Sebastian, G. A. Ozin, and G. Lanzani, “Two-photon poly(phenylenevinylene) DFB laser,” Chem. Mater.23(3), 805–809 (2011).
[CrossRef]

Sebastian, M.

F. Scotognella, D. P. Puzzo, M. Zavelaini-Rossi, J. Clark, M. Sebastian, G. A. Ozin, and G. Lanzani, “Two-photon poly(phenylenevinylene) DFB laser,” Chem. Mater.23(3), 805–809 (2011).
[CrossRef]

Shim, H.-K.

S. C. Jeoung, D. H. Jeong, T. Ahn, J.-Y. Han, M.-S. Jang, H.-K. Shim, and D. Kim, “Direct probe of spectrally narrowed emission from π-conjugated polymers: the elucidation for spectral line narrowing,” J. Phys. Chem. B106(35), 8921–8927 (2002).
[CrossRef]

Signorini, R.

J. J. Jasieniak, I. Fortunati, S. Gardin, R. Signorini, R. Bozio, A. Martucci, and P. Mulvaney, “Highly efficient amplified spontaneous emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping,” Adv. Mater. (Deerfield Beach Fla.)20(1), 69–73 (2008).
[CrossRef]

Smith, A. D.

I. B. Martini, A. D. Smith, and B. J. Schwartz, “Exciton-exciton annihilation and the production of interchain species in conjugated polymer films: comparing the ultrafast stimulated emission and photoluminescence dynamics of MEH-PPV,” Phys. Rev. B69(3), 035204 (2004).
[CrossRef]

Song, N. W.

J.-W. Yu, J. K. Kim, D. Y. Kim, C. Kim, N. W. Song, and D. Kim, “Prediction of efficient energy transfer in emissive polymer blends based on Föster radius and the excited state lifetime of acceptors,” Curr. Appl. Phys.6(1), 59–65 (2006).
[CrossRef]

Sun, F.-W.

C. Zhang, C.-L. Zou, Y. L. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y. S. Zhao, and J. Yao, “Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators,” J. Am. Chem. Soc.133(19), 7276–7279 (2011).
[CrossRef] [PubMed]

Sun, X. W.

Swager, T. M.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434(7035), 876–879 (2005).
[CrossRef] [PubMed]

Tan, L.-S.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

Tessler, N.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugate-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

Thompson, M. E.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Foester energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Tiefenbrunn, T.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007).
[CrossRef]

Tsiminis, G.

Turnbull, G. A.

G. Tsiminis, A. Ruseckas, I. D. W. Samuel, and G. A. Turnbull, “A two-photon pumped polyfluorene laser,” Appl. Phys. Lett.94(25), 253304 (2009).
[CrossRef]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

Vasdekis, A. E.

Wagner, S.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. (Deerfield Beach Fla.)23(7), 869–872 (2011).
[CrossRef]

Wang, A. Y.

C. F. Zhang, F. Zhang, A. Cheng, B. Kimball, A. Y. Wang, and J. Xu, “Frequency up-converted lasing of nanocrystal quantum dots in microbeads,” Appl. Phys. Lett.95(18), 183109 (2009).
[CrossRef]

Wang, J.

Wang, Y. A.

Wudl, F.

G. S. He, R. Helgeson, T. C. Lin, Q. D. Zheng, F. Wudl, and P. N. Prasad, “One-, two-, and three-photon pumped lasing in a novel liquid dye salt system,” IEEE J. Quantum Electron.39(8), 1003–1008 (2003).
[CrossRef]

Xu, C. X.

G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, “Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle,” Appl. Phys. Lett.94(5), 051106 (2009).
[CrossRef]

Xu, J.

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Yan, R.

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Yan, Y. L.

C. Zhang, C.-L. Zou, Y. L. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y. S. Zhao, and J. Yao, “Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators,” J. Am. Chem. Soc.133(19), 7276–7279 (2011).
[CrossRef] [PubMed]

Yang, L.

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Yang, P. D.

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Yang, Y.

Yao, J.

C. Zhang, C.-L. Zou, Y. L. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y. S. Zhao, and J. Yao, “Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators,” J. Am. Chem. Soc.133(19), 7276–7279 (2011).
[CrossRef] [PubMed]

You, G. J.

You, Y.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Foester energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Yu, J.-W.

J.-W. Yu, J. K. Kim, D. Y. Kim, C. Kim, N. W. Song, and D. Kim, “Prediction of efficient energy transfer in emissive polymer blends based on Föster radius and the excited state lifetime of acceptors,” Curr. Appl. Phys.6(1), 59–65 (2006).
[CrossRef]

Zavelaini-Rossi, M.

F. Scotognella, D. P. Puzzo, M. Zavelaini-Rossi, J. Clark, M. Sebastian, G. A. Ozin, and G. Lanzani, “Two-photon poly(phenylenevinylene) DFB laser,” Chem. Mater.23(3), 805–809 (2011).
[CrossRef]

Zhang, C.

C. Zhang, C.-L. Zou, Y. L. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y. S. Zhao, and J. Yao, “Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators,” J. Am. Chem. Soc.133(19), 7276–7279 (2011).
[CrossRef] [PubMed]

Zhang, C. F.

Zhang, F.

Zhang, Q.

Zhao, C. F.

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett.68(25), 3549–3551 (1996).
[CrossRef]

G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett.67(25), 3703–3705 (1995).
[CrossRef]

Zhao, Y. S.

C. Zhang, C.-L. Zou, Y. L. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y. S. Zhao, and J. Yao, “Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators,” J. Am. Chem. Soc.133(19), 7276–7279 (2011).
[CrossRef] [PubMed]

Zheng, Q.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

G. S. He, Q. Zheng, P. N. Prasad, J. G. Grote, and F. K. Hopkins, “Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex,” Opt. Lett.31(3), 359–361 (2006).
[CrossRef] [PubMed]

Zheng, Q. D.

G. S. He, R. Helgeson, T. C. Lin, Q. D. Zheng, F. Wudl, and P. N. Prasad, “One-, two-, and three-photon pumped lasing in a novel liquid dye salt system,” IEEE J. Quantum Electron.39(8), 1003–1008 (2003).
[CrossRef]

Zhou, G.

H. Kim, N. Schulte, G. Zhou, K. Mullen, and F. Laquai, “A high gain and high charge carrier mobility indenofluorene-phenathrene copolymer for light amplication and organic lasing,” Adv. Mater. (Deerfield Beach Fla.)23(7), 894–897 (2011).
[CrossRef]

Zhu, G. P.

G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, “Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle,” Appl. Phys. Lett.94(5), 051106 (2009).
[CrossRef]

Zhu, J.

G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, “Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle,” Appl. Phys. Lett.94(5), 051106 (2009).
[CrossRef]

Zhu, J. G.

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Zhu, T.

Zhu, Z.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434(7035), 876–879 (2005).
[CrossRef] [PubMed]

Zou, C.-L.

C. Zhang, C.-L. Zou, Y. L. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y. S. Zhao, and J. Yao, “Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators,” J. Am. Chem. Soc.133(19), 7276–7279 (2011).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

C. Bauer, B. Schnabel, E.-B. Kley, U. Scherf, H. Giessen, and R. F. Mahrt, “Two-photon pumped lasing from two-dimensional photonic bandgap structure with polymeric gain material,” Adv. Mater. (Deerfield Beach Fla.)14(9), 673–676 (2002).
[CrossRef]

J. J. Jasieniak, I. Fortunati, S. Gardin, R. Signorini, R. Bozio, A. Martucci, and P. Mulvaney, “Highly efficient amplified spontaneous emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping,” Adv. Mater. (Deerfield Beach Fla.)20(1), 69–73 (2008).
[CrossRef]

M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. (Deerfield Beach Fla.)12(22), 1655–1668 (2000).
[CrossRef]

H. Kim, N. Schulte, G. Zhou, K. Mullen, and F. Laquai, “A high gain and high charge carrier mobility indenofluorene-phenathrene copolymer for light amplication and organic lasing,” Adv. Mater. (Deerfield Beach Fla.)23(7), 894–897 (2011).
[CrossRef]

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. (Deerfield Beach Fla.)23(7), 869–872 (2011).
[CrossRef]

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. (Deerfield Beach Fla.)19(15), 1921–1926 (2007).
[CrossRef]

Ann. Phys.

Th. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys.437(1-2), 55–75 (1948).
[CrossRef]

Appl. Phys. Lett.

D. Moses, “High quantum efficiency luminescence from a conducting polymer in solution: a novel polymer laser dye,” Appl. Phys. Lett.60(26), 3215–3216 (1992).
[CrossRef]

G. Tsiminis, A. Ruseckas, I. D. W. Samuel, and G. A. Turnbull, “A two-photon pumped polyfluorene laser,” Appl. Phys. Lett.94(25), 253304 (2009).
[CrossRef]

G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, “Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle,” Appl. Phys. Lett.94(5), 051106 (2009).
[CrossRef]

G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, “Two-photon pumped cavity lasing in novel dye doped bulk matrix rods,” Appl. Phys. Lett.67(25), 3703–3705 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett.68(25), 3549–3551 (1996).
[CrossRef]

C. F. Zhang, F. Zhang, A. Cheng, B. Kimball, A. Y. Wang, and J. Xu, “Frequency up-converted lasing of nanocrystal quantum dots in microbeads,” Appl. Phys. Lett.95(18), 183109 (2009).
[CrossRef]

Chem. Mater.

F. Scotognella, D. P. Puzzo, M. Zavelaini-Rossi, J. Clark, M. Sebastian, G. A. Ozin, and G. Lanzani, “Two-photon poly(phenylenevinylene) DFB laser,” Chem. Mater.23(3), 805–809 (2011).
[CrossRef]

Chem. Rev.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

Curr. Appl. Phys.

J.-W. Yu, J. K. Kim, D. Y. Kim, C. Kim, N. W. Song, and D. Kim, “Prediction of efficient energy transfer in emissive polymer blends based on Föster radius and the excited state lifetime of acceptors,” Curr. Appl. Phys.6(1), 59–65 (2006).
[CrossRef]

IEEE J. Quantum Electron.

G. S. He, R. Helgeson, T. C. Lin, Q. D. Zheng, F. Wudl, and P. N. Prasad, “One-, two-, and three-photon pumped lasing in a novel liquid dye salt system,” IEEE J. Quantum Electron.39(8), 1003–1008 (2003).
[CrossRef]

J. Am. Chem. Soc.

C. Zhang, C.-L. Zou, Y. L. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y. S. Zhao, and J. Yao, “Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators,” J. Am. Chem. Soc.133(19), 7276–7279 (2011).
[CrossRef] [PubMed]

J. Appl. Phys.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Foester energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

J. Phys. Chem. B

S. C. Jeoung, D. H. Jeong, T. Ahn, J.-Y. Han, M.-S. Jang, H.-K. Shim, and D. Kim, “Direct probe of spectrally narrowed emission from π-conjugated polymers: the elucidation for spectral line narrowing,” J. Phys. Chem. B106(35), 8921–8927 (2002).
[CrossRef]

Nat. Nanotechnol.

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Nat. Photonics

R. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Nature

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434(7035), 876–879 (2005).
[CrossRef] [PubMed]

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugate-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burroughs, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature415(6873), 767–770 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

I. B. Martini, A. D. Smith, and B. J. Schwartz, “Exciton-exciton annihilation and the production of interchain species in conjugated polymer films: comparing the ultrafast stimulated emission and photoluminescence dynamics of MEH-PPV,” Phys. Rev. B69(3), 035204 (2004).
[CrossRef]

Phys. Status Solidi B

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B247, 774–788 (2010).

Science

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Other

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Frequency up-converted emission properties of ET-coupled dye-polymer blend films. (a) Diagram of the mechanism of ET based TP pumped lasing. (b) and (c) are typical emission spectra from a neat polymer film and a blend film with different excitation flux at 750 nm. Inset of (c) shows normalized spontaneous emission (SPE) and amplified spontaneous emission (ASE) spectra from the blend film recorded with excitation flux of 13 μJ/cm2 and 150 μJ/cm2. (d) Emission intensity from the neat and blend films is plotted as functions of excitation flux. Threshold behaviors can be found with the slope change. (e) ASE thresholds for the blend films versus dye doping level.

Fig. 2
Fig. 2

Nonlinear transmission is plotted as functions of the excitation flux in neat and blend films with excitation of femtosecond pulses at 750 nm.

Fig. 3
Fig. 3

(a) Normalized absorption and emission spectra of the donor dye and acceptor polymer in chlorobenzene solution. (b) TPP emission spectra from solution with different dye polymer ratio (0.05 mg/mL Dye, 0.05 mg/mL Dye and 0.005 mg/mL polymer, 0.05 mg/mL Dye and 0.01 mg/mL polymer, 0.01 mg/L polymer) and blend films (Dye:Polymer = 10:1). The excitation source is femtosecond pulses at 750 nm.

Fig. 4
Fig. 4

Time-resolved study on the emission properties of dye-polymer composites. (a) Logarithm plot of time-resolved photoluminescence traces with excitation near threshold [Fitting parameters are listed in Table 1]. Inset shows the growth traces. (b) and (c) are counter plots of the SPE and ASE as functions of decay time and emission wavelength from the blend film.

Fig. 5
Fig. 5

Typical lasing emission spectrum from DFB composite laser is shown in comparison with ASE spectra from a blend film. Inset shows the excitation threshold at different excitation wavelength.

Tables (1)

Tables Icon

Table 1 Time evolution details of TP pumped emission properties in blend films under excitation at near the ASE threshold. Table listed the best fitting parameters [R2>99.8%] for the growth and decay processes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ ET =k( N A / N D ) d DA 6 ,

Metrics