Abstract

Optical resonant microcavities with ultra high quality factors are widely used for biosensing. Until now, the primary method of detection has been based upon tracking the resonant wavelength shift as a function of biodetection events. One of the sources of noise in all resonant-wavelength shift measurements is the noise due to intensity fluctuations of the laser source. An alternative approach is to track the change in the quality factor of the optical cavity by using phase shift cavity ring down spectroscopy, a technique which is insensitive to the intensity fluctuations of the laser source. Here, using biotinylated microtoroid resonant cavities, we show simultaneous measurement of the quality factor and the wavelength shift by using phase shift cavity ring down spectroscopy. These measurements were performed for disassociation phase of biotin-streptavidin reaction. We found that the disassociation curves are in good agreement with the previously published results. Hence, we demonstrate not only the application of phase shift cavity ring down spectroscopy to microcavities in the liquid phase but also simultaneous measurement of the quality factor and the wavelength shift for the microcavity biosensors in the application of kinetics measurements.

© 2012 OSA

Full Article  |  PDF Article

Errata

M. Imran Cheema, Simin Mehrabani, Ahmad A. Hayat, Yves-Alain Peter, Andrea M. Armani, and Andrew G. Kirk, "Erratum: Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy," Opt. Express 21, 15430-15431 (2013)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-13-15430

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
    [CrossRef] [PubMed]
  2. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
    [CrossRef]
  3. A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227 (2011).
    [CrossRef]
  4. C. E. Soteropulos, H. K. Hunt, and A. M. Armani, “Determination of binding kinetics using whispering gallery mode microcavities,” Appl. Phys. Lett. 99, 103703 (2011).
    [CrossRef] [PubMed]
  5. M. I. Cheema and A. G. Kirk, “Application of ring down measurement approach to microcavities for bio-sensing applications,” Proc. SPIE 7888, 788808 (2011)
    [CrossRef]
  6. V. S. Ilchenko and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 72 (2002).
  7. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
    [CrossRef] [PubMed]
  8. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
    [CrossRef] [PubMed]
  9. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26, 1032–1041 (2009).
    [CrossRef]
  10. D. Anderson, J. Frisch, and C. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984).
    [CrossRef] [PubMed]
  11. A. Okeefe and D. Deacon, “Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  12. E. G. Berden and R. Engeln, Cavity Ring-Down Specroscopy: Techniques and Applications (Wiley, 2009).
  13. K. K. Lehmann and H. Huang, “Optimal Signal Processing in Cavity Ring-Down Spectroscopy,” Frontiers of Molecular Spectroscopy (Elsevier, 2009), pp. 623–658.
    [CrossRef]
  14. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method,” Appl. Opt. 19, 144–147 (1980).
    [CrossRef] [PubMed]
  15. R. Engeln, G. VonHelden, G. Berden, and G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
    [CrossRef]
  16. L. van der Sneppen, “Liquid-phase cavity ring-down spectroscopy for improved analytical detection sensitivity,” Ph.D. thesis, Vrije University, Amsterdam (2008).
  17. T. Peter and K. K. Lehmann, “Cavity ring Down biosensing,” Optical Biosensors: Today and Tomorrow (Elsevier B.V, 2008), pp. 403–418.
  18. P. Tarsa, A. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett. 85, 4523–4525 (2004).
    [CrossRef]
  19. Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H.-P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
    [CrossRef] [PubMed]
  20. J. Barnes, B. Carver, J. M. Fraser, G. Gagliardi, H. P. Loock, Z. Tian, M. W. B. Wilson, S. Yam, and O. Yastrubshak, “Loss determination in microsphere resonators by phase-shift cavity ring-down measurements,” Opt. Express 16, 13158–13167 (2008).
    [CrossRef] [PubMed]
  21. H. K. Hunt, C. Soteropulos, and A. M. Armani, “Bioconjugation strategies for microtoroidal optical resonators,” Sensors 10, 9317–9336 (2010).
    [CrossRef] [PubMed]
  22. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421 (2003).
    [CrossRef] [PubMed]
  23. S. Spillane, “Fiber-coupled ultra-high-q microresonators for nonlinear and quantum optics,” Ph.D. thesis, California Inst. of Technol. (2004).
  24. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  25. A. Schliesser and T. J. Kippenberg, “Cavity Optomechanics with Whispering-Gallery Mode Optical Micro-Resonators,” Advances in Atomic Molecular and Optical Physics (Elsevier Inc., 2010), Vol. 58, pp. 207–323.
    [CrossRef]
  26. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [CrossRef] [PubMed]
  27. V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).
  28. S. Zhao and W. M. Reichert, “Influence of biotin lipid surface density and accessibility on avidin binding to the tip of an optical fiber sensor,” Langmuir 8, 2785–2791 (1992).
    [CrossRef]
  29. A. T. Rosenberger, “Analysis of whispering-gallery microcavity-enhanced chemical absorption sensors,” Opt. Express 15, 12959–12964 (2007).
    [CrossRef] [PubMed]
  30. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
    [CrossRef] [PubMed]
  31. J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
    [CrossRef]
  32. K. L. Snyder and R. N. Zare, “Cavity ring-down spectroscopy as a detector for liquid chromatography,” Anal. Chem. 75, 3086–3091 (2003).
    [CrossRef] [PubMed]
  33. B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
    [CrossRef] [PubMed]

2011 (5)

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227 (2011).
[CrossRef]

C. E. Soteropulos, H. K. Hunt, and A. M. Armani, “Determination of binding kinetics using whispering gallery mode microcavities,” Appl. Phys. Lett. 99, 103703 (2011).
[CrossRef] [PubMed]

M. I. Cheema and A. G. Kirk, “Application of ring down measurement approach to microcavities for bio-sensing applications,” Proc. SPIE 7888, 788808 (2011)
[CrossRef]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[CrossRef] [PubMed]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[CrossRef]

2010 (1)

H. K. Hunt, C. Soteropulos, and A. M. Armani, “Bioconjugation strategies for microtoroidal optical resonators,” Sensors 10, 9317–9336 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (3)

2007 (1)

2006 (1)

2005 (1)

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

2004 (2)

P. Tarsa, A. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett. 85, 4523–4525 (2004).
[CrossRef]

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H.-P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef] [PubMed]

2003 (2)

K. L. Snyder and R. N. Zare, “Cavity ring-down spectroscopy as a detector for liquid chromatography,” Anal. Chem. 75, 3086–3091 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421 (2003).
[CrossRef] [PubMed]

2002 (2)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

V. S. Ilchenko and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 72 (2002).

1997 (1)

1996 (1)

R. Engeln, G. VonHelden, G. Berden, and G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

1992 (2)

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

S. Zhao and W. M. Reichert, “Influence of biotin lipid surface density and accessibility on avidin binding to the tip of an optical fiber sensor,” Langmuir 8, 2785–2791 (1992).
[CrossRef]

1988 (1)

A. Okeefe and D. Deacon, “Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1984 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1980 (1)

Agarwal, A.

Anderson, D.

Ariese, F.

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

Armani, A. M.

C. E. Soteropulos, H. K. Hunt, and A. M. Armani, “Determination of binding kinetics using whispering gallery mode microcavities,” Appl. Phys. Lett. 99, 103703 (2011).
[CrossRef] [PubMed]

H. K. Hunt, C. Soteropulos, and A. M. Armani, “Bioconjugation strategies for microtoroidal optical resonators,” Sensors 10, 9317–9336 (2010).
[CrossRef] [PubMed]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
[CrossRef] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421 (2003).
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Bahnev, B.

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

Bailey, R. C.

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227 (2011).
[CrossRef]

Barnes, J.

Benard, D. J.

Berden, E. G.

E. G. Berden and R. Engeln, Cavity Ring-Down Specroscopy: Techniques and Applications (Wiley, 2009).

Berden, G.

R. Engeln, G. VonHelden, G. Berden, and G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

Birks, T. A.

Bowen, W. P.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[CrossRef]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Carver, B.

Cheema, M. I.

M. I. Cheema and A. G. Kirk, “Application of ring down measurement approach to microcavities for bio-sensing applications,” Proc. SPIE 7888, 788808 (2011)
[CrossRef]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Cheung, G.

Deacon, D.

A. Okeefe and D. Deacon, “Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Engeln, R.

R. Engeln, G. VonHelden, G. Berden, and G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

E. G. Berden and R. Engeln, Cavity Ring-Down Specroscopy: Techniques and Applications (Wiley, 2009).

Fan, X.

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Fraser, J. M.

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Frisch, J.

Gagliardi, G.

Gooijer, C.

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

Gorodetskii, M. L.

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Herbelin, J. M.

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hu, J.

Huang, H.

K. K. Lehmann and H. Huang, “Optimal Signal Processing in Cavity Ring-Down Spectroscopy,” Frontiers of Molecular Spectroscopy (Elsevier, 2009), pp. 623–658.
[CrossRef]

Hunt, H. K.

C. E. Soteropulos, H. K. Hunt, and A. M. Armani, “Determination of binding kinetics using whispering gallery mode microcavities,” Appl. Phys. Lett. 99, 103703 (2011).
[CrossRef] [PubMed]

H. K. Hunt, C. Soteropulos, and A. M. Armani, “Bioconjugation strategies for microtoroidal optical resonators,” Sensors 10, 9317–9336 (2010).
[CrossRef] [PubMed]

Ilchenko, V. S.

V. S. Ilchenko and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 72 (2002).

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Jacques, F.

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Kimerling, L. C.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421 (2003).
[CrossRef] [PubMed]

A. Schliesser and T. J. Kippenberg, “Cavity Optomechanics with Whispering-Gallery Mode Optical Micro-Resonators,” Advances in Atomic Molecular and Optical Physics (Elsevier Inc., 2010), Vol. 58, pp. 207–323.
[CrossRef]

Kirk, A. G.

M. I. Cheema and A. G. Kirk, “Application of ring down measurement approach to microcavities for bio-sensing applications,” Proc. SPIE 7888, 788808 (2011)
[CrossRef]

Knight, J. C.

Knittel, J.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Kwok, M. A.

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Lehmann, K. K.

P. Tarsa, A. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett. 85, 4523–4525 (2004).
[CrossRef]

T. Peter and K. K. Lehmann, “Cavity ring Down biosensing,” Optical Biosensors: Today and Tomorrow (Elsevier B.V, 2008), pp. 403–418.

K. K. Lehmann and H. Huang, “Optimal Signal Processing in Cavity Ring-Down Spectroscopy,” Frontiers of Molecular Spectroscopy (Elsevier, 2009), pp. 623–658.
[CrossRef]

Li, R.

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H.-P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef] [PubMed]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Loock, H. P.

Loock, H.-P.

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H.-P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef] [PubMed]

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Maleki, L.

V. S. Ilchenko and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 72 (2002).

Masser, C.

McCormick, T.

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H.-P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef] [PubMed]

McKay, J. A.

Meijer, G.

R. Engeln, G. VonHelden, G. Berden, and G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Okeefe, A.

A. Okeefe and D. Deacon, “Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Oleschuk, R. D.

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H.-P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef] [PubMed]

Peter, T.

T. Peter and K. K. Lehmann, “Cavity ring Down biosensing,” Optical Biosensors: Today and Tomorrow (Elsevier B.V, 2008), pp. 403–418.

Rabinowitz, P.

P. Tarsa, A. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett. 85, 4523–4525 (2004).
[CrossRef]

Reichert, W. M.

S. Zhao and W. M. Reichert, “Influence of biotin lipid surface density and accessibility on avidin binding to the tip of an optical fiber sensor,” Langmuir 8, 2785–2791 (1992).
[CrossRef]

Rosenberger, A. T.

Schliesser, A.

A. Schliesser and T. J. Kippenberg, “Cavity Optomechanics with Whispering-Gallery Mode Optical Micro-Resonators,” Advances in Atomic Molecular and Optical Physics (Elsevier Inc., 2010), Vol. 58, pp. 207–323.
[CrossRef]

Shopoua, S. I.

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Snyder, K. L.

K. L. Snyder and R. N. Zare, “Cavity ring-down spectroscopy as a detector for liquid chromatography,” Anal. Chem. 75, 3086–3091 (2003).
[CrossRef] [PubMed]

Soteropulos, C.

H. K. Hunt, C. Soteropulos, and A. M. Armani, “Bioconjugation strategies for microtoroidal optical resonators,” Sensors 10, 9317–9336 (2010).
[CrossRef] [PubMed]

Soteropulos, C. E.

C. E. Soteropulos, H. K. Hunt, and A. M. Armani, “Determination of binding kinetics using whispering gallery mode microcavities,” Appl. Phys. Lett. 99, 103703 (2011).
[CrossRef] [PubMed]

Spencer, D. J.

Spillane, S.

S. Spillane, “Fiber-coupled ultra-high-q microresonators for nonlinear and quantum optics,” Ph.D. thesis, California Inst. of Technol. (2004).

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421 (2003).
[CrossRef] [PubMed]

Sun, X.

Sun, Y.

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Swaim, J. D.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[CrossRef]

Tarsa, P.

P. Tarsa, A. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett. 85, 4523–4525 (2004).
[CrossRef]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Tian, Z.

Tong, Z.

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H.-P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef] [PubMed]

Ubachs, W.

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

Ueunten, R. H.

Urevig, D. S.

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Vahala, K. J.

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421 (2003).
[CrossRef] [PubMed]

van der Sneppen, L.

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

L. van der Sneppen, “Liquid-phase cavity ring-down spectroscopy for improved analytical detection sensitivity,” Ph.D. thesis, Vrije University, Amsterdam (2008).

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

VonHelden, G.

R. Engeln, G. VonHelden, G. Berden, and G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Washburn, A. L.

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227 (2011).
[CrossRef]

White, I. M.

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef] [PubMed]

Wilson, M. W. B.

Wiskerke, A. E.

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

Wist, A.

P. Tarsa, A. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett. 85, 4523–4525 (2004).
[CrossRef]

Wright, A.

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H.-P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef] [PubMed]

Yam, S.

Yastrubshak, O.

Zare, R. N.

K. L. Snyder and R. N. Zare, “Cavity ring-down spectroscopy as a detector for liquid chromatography,” Anal. Chem. 75, 3086–3091 (2003).
[CrossRef] [PubMed]

Zhao, S.

S. Zhao and W. M. Reichert, “Influence of biotin lipid surface density and accessibility on avidin binding to the tip of an optical fiber sensor,” Langmuir 8, 2785–2791 (1992).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Anal. Chem. (3)

Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H.-P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[CrossRef] [PubMed]

K. L. Snyder and R. N. Zare, “Cavity ring-down spectroscopy as a detector for liquid chromatography,” Anal. Chem. 75, 3086–3091 (2003).
[CrossRef] [PubMed]

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Analyst (1)

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Appl. Phys. Lett. (4)

P. Tarsa, A. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett. 85, 4523–4525 (2004).
[CrossRef]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[CrossRef]

C. E. Soteropulos, H. K. Hunt, and A. M. Armani, “Determination of binding kinetics using whispering gallery mode microcavities,” Appl. Phys. Lett. 99, 103703 (2011).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

R. Engeln, G. VonHelden, G. Berden, and G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Langmuir (1)

S. Zhao and W. M. Reichert, “Influence of biotin lipid surface density and accessibility on avidin binding to the tip of an optical fiber sensor,” Langmuir 8, 2785–2791 (1992).
[CrossRef]

Laser Phys. (1)

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Proc. SPIE (2)

M. I. Cheema and A. G. Kirk, “Application of ring down measurement approach to microcavities for bio-sensing applications,” Proc. SPIE 7888, 788808 (2011)
[CrossRef]

V. S. Ilchenko and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 72 (2002).

Rev. Sci. Instrum. (1)

A. Okeefe and D. Deacon, “Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Sensors (1)

H. K. Hunt, C. Soteropulos, and A. M. Armani, “Bioconjugation strategies for microtoroidal optical resonators,” Sensors 10, 9317–9336 (2010).
[CrossRef] [PubMed]

Other (6)

S. Spillane, “Fiber-coupled ultra-high-q microresonators for nonlinear and quantum optics,” Ph.D. thesis, California Inst. of Technol. (2004).

A. Schliesser and T. J. Kippenberg, “Cavity Optomechanics with Whispering-Gallery Mode Optical Micro-Resonators,” Advances in Atomic Molecular and Optical Physics (Elsevier Inc., 2010), Vol. 58, pp. 207–323.
[CrossRef]

E. G. Berden and R. Engeln, Cavity Ring-Down Specroscopy: Techniques and Applications (Wiley, 2009).

K. K. Lehmann and H. Huang, “Optimal Signal Processing in Cavity Ring-Down Spectroscopy,” Frontiers of Molecular Spectroscopy (Elsevier, 2009), pp. 623–658.
[CrossRef]

L. van der Sneppen, “Liquid-phase cavity ring-down spectroscopy for improved analytical detection sensitivity,” Ph.D. thesis, Vrije University, Amsterdam (2008).

T. Peter and K. K. Lehmann, “Cavity ring Down biosensing,” Optical Biosensors: Today and Tomorrow (Elsevier B.V, 2008), pp. 403–418.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental Setup, FG - Function Generator (b) Magnified view of the microacquarium. A cover slip is placed 2mm (approx.) above the microcavity chip holder with a spacer to form the microacquarium. (c) Scanning electron microscope (SEM) image of the microtoroidal cavity

Fig. 2
Fig. 2

Two types of measurements (a) Minimum of one of the resonant peak is tracked as function of the biodetection event (b) Phase shift experienced by the sinusoid coming out of the microcavity is tracked as a function of the biodetection event. With reference to Fig. (a), black sinusoid is extracted at the resonant peak.

Fig. 3
Fig. 3

Full scan with zoom in view of FSP and BSP (a) Continuous monitoring of phase as function of disassociation of the streptavidin from the biotin (b) Due to limitations of the computer speed, two FSPs and BSPs are separated by 5s respectively.

Fig. 4
Fig. 4

Experimental parameters. The curves are not smooth because each data point is 5s apart on each curve, a limitation of the computer used in the experiment. In (b), negative values signify that the resonant wavelength is shifting towards blue

Fig. 5
Fig. 5

A typical error signal, recorded by moving the taper far away from the microcavity. Mean: ±0.2662°, Variance: 0.1076°, mode: ±0.3387°. Based upon the detected signals, ( Signal Noise ) min = 12 dB, and ( Signal Noise ) max = 15.8 dB

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I in put = I o ( 1 + α in put   sin   ω t )
I cavity = I 2 ( 1 + α in put   sin   ω t )
h ( t ) = C   exp   ( t τ )
I out put ( t ) = I 1 ( 1 + α in put   sin   ω t ) + I cavity * h ( t )
= I 1 ( 1 + α in put   sin   ω t ) + C t I 2 ( 1 + α in put   sin   ω t ´ )   exp   ( t t ´ τ )   d t ´
C t I 2 exp   ( t t ´ τ )   d t ´ = I 2
C = 1 τ
I out put ( t ) = I 1 ( 1 + α in put   sin   ω t ) + I 2 ( 1 + α out put   sin   ( ω t + ϕ ) )
tan   ϕ = ω τ
α out put = α in put 1 + ω 2 τ 2
Q = 2 π c τ λ resonant

Metrics