Abstract

Experimental results indicate that there is a distinct difference between the temperature tuning curves obtained with intracavity second harmonic generation (Intra-SHG) and extracavity SHG (Extra-SHG) configuration. By introducing the nonlinear SHG loss with the phase mismatch taken into consideration, the rate equations are established to describe the Intra-SHG laser performance. As for the widely used SHG crystal, KTP and LBO, theoretically calculated variation trends of the temperature insensitivity are in agreement with that obtained experimentally. The corresponding explanations have also been given in this paper. Our results may provide a new view on the temperature insensitivity of Intra-SHG configuration. The method employed in our study can be extended to other nonlinear crystals and intracavity nonlinear frequency conversions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Magni, G. Cerullo, S. De Silvestri, O. Svelto, L. J. Qian, and M. Danailov, “Intracavity frequency doubling of a cw high-power TEM00 Nd:YLF laser,” Opt. Lett. 18(24), 2111–2113 (1993).
    [CrossRef] [PubMed]
  2. C. L. Du, S. C. Ruan, Y. Q. Yu, and F. Zeng, “6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm,” Opt. Express 13(6), 2013–2018 (2005).
    [CrossRef] [PubMed]
  3. Q. H. Xue, Q. Zheng, Y. K. Bu, F. Q. Jia, and L. S. Qian, “High-power efficient diode-pumped Nd:YVO4/LiB3O5 457 nm blue laser with 4.6 W of output power,” Opt. Lett. 31(8), 1070–1072 (2006).
    [CrossRef] [PubMed]
  4. R. Sarrouf, V. Sousa, T. Badr, G. Xu, and J.-J. Zondy, “Watt-level single-frequency tunable Nd:YLF/periodically poled KTiOPO(4) red laser,” Opt. Lett. 32(18), 2732–2734 (2007).
    [CrossRef] [PubMed]
  5. Z. Y. Ren, Z. M. Huang, S. Jia, Y. Ge, and J. T. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282(2), 263–266 (2009).
    [CrossRef]
  6. H. T. Huang, G. Qiu, B. T. Zhang, J. L. He, J. F. Yang, and J. L. Xu, “Comparative study on the intracavity frequency-doubling 532 nm laser based on gray-tracking-resistant KTP and conventional KTP,” Appl. Opt. 48(32), 6371–6375 (2009).
    [CrossRef] [PubMed]
  7. H. T. Huang, J. L. He, C. H. Zuo, B. T. Zhang, X. L. Dong, S. Zhao, and Y. Wang, “Highly efficient and compact laser-diode end-pumped Q-switched Nd:YVO4/KTP red laser,” Opt. Commun. 281(4), 803–807 (2008).
    [CrossRef]
  8. K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
    [CrossRef]
  9. K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28(10), 1974–1976 (1992).
    [CrossRef]
  10. S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in Lithium Triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
    [CrossRef]

2009 (2)

2008 (1)

H. T. Huang, J. L. He, C. H. Zuo, B. T. Zhang, X. L. Dong, S. Zhao, and Y. Wang, “Highly efficient and compact laser-diode end-pumped Q-switched Nd:YVO4/KTP red laser,” Opt. Commun. 281(4), 803–807 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[CrossRef]

1993 (1)

1992 (1)

K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28(10), 1974–1976 (1992).
[CrossRef]

1991 (1)

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in Lithium Triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
[CrossRef]

Badr, T.

Bai, J. T.

Z. Y. Ren, Z. M. Huang, S. Jia, Y. Ge, and J. T. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282(2), 263–266 (2009).
[CrossRef]

Bu, Y. K.

Cerullo, G.

Danailov, M.

Davis, L.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in Lithium Triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
[CrossRef]

De Silvestri, S.

Dong, X. L.

H. T. Huang, J. L. He, C. H. Zuo, B. T. Zhang, X. L. Dong, S. Zhao, and Y. Wang, “Highly efficient and compact laser-diode end-pumped Q-switched Nd:YVO4/KTP red laser,” Opt. Commun. 281(4), 803–807 (2008).
[CrossRef]

Du, C. L.

Ge, Y.

Z. Y. Ren, Z. M. Huang, S. Jia, Y. Ge, and J. T. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282(2), 263–266 (2009).
[CrossRef]

He, J. L.

H. T. Huang, G. Qiu, B. T. Zhang, J. L. He, J. F. Yang, and J. L. Xu, “Comparative study on the intracavity frequency-doubling 532 nm laser based on gray-tracking-resistant KTP and conventional KTP,” Appl. Opt. 48(32), 6371–6375 (2009).
[CrossRef] [PubMed]

H. T. Huang, J. L. He, C. H. Zuo, B. T. Zhang, X. L. Dong, S. Zhao, and Y. Wang, “Highly efficient and compact laser-diode end-pumped Q-switched Nd:YVO4/KTP red laser,” Opt. Commun. 281(4), 803–807 (2008).
[CrossRef]

Huang, C.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in Lithium Triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
[CrossRef]

Huang, H. T.

H. T. Huang, G. Qiu, B. T. Zhang, J. L. He, J. F. Yang, and J. L. Xu, “Comparative study on the intracavity frequency-doubling 532 nm laser based on gray-tracking-resistant KTP and conventional KTP,” Appl. Opt. 48(32), 6371–6375 (2009).
[CrossRef] [PubMed]

H. T. Huang, J. L. He, C. H. Zuo, B. T. Zhang, X. L. Dong, S. Zhao, and Y. Wang, “Highly efficient and compact laser-diode end-pumped Q-switched Nd:YVO4/KTP red laser,” Opt. Commun. 281(4), 803–807 (2008).
[CrossRef]

Huang, Z. M.

Z. Y. Ren, Z. M. Huang, S. Jia, Y. Ge, and J. T. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282(2), 263–266 (2009).
[CrossRef]

Jia, F. Q.

Jia, S.

Z. Y. Ren, Z. M. Huang, S. Jia, Y. Ge, and J. T. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282(2), 263–266 (2009).
[CrossRef]

Kato, K.

K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28(10), 1974–1976 (1992).
[CrossRef]

Li, G. Q.

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[CrossRef]

Magni, V.

Qian, L. J.

Qian, L. S.

Qiu, G.

Ren, Z. Y.

Z. Y. Ren, Z. M. Huang, S. Jia, Y. Ge, and J. T. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282(2), 263–266 (2009).
[CrossRef]

Ruan, S. C.

Sarrouf, R.

Sousa, V.

Svelto, O.

Velsko, S. P.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in Lithium Triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
[CrossRef]

Wang, Y.

H. T. Huang, J. L. He, C. H. Zuo, B. T. Zhang, X. L. Dong, S. Zhao, and Y. Wang, “Highly efficient and compact laser-diode end-pumped Q-switched Nd:YVO4/KTP red laser,” Opt. Commun. 281(4), 803–807 (2008).
[CrossRef]

Webb, M.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in Lithium Triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
[CrossRef]

Xu, G.

Xu, J. L.

Xue, Q. H.

Yang, J. F.

Yang, K. J.

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[CrossRef]

Yu, Y. Q.

Zeng, F.

Zhang, B. T.

H. T. Huang, G. Qiu, B. T. Zhang, J. L. He, J. F. Yang, and J. L. Xu, “Comparative study on the intracavity frequency-doubling 532 nm laser based on gray-tracking-resistant KTP and conventional KTP,” Appl. Opt. 48(32), 6371–6375 (2009).
[CrossRef] [PubMed]

H. T. Huang, J. L. He, C. H. Zuo, B. T. Zhang, X. L. Dong, S. Zhao, and Y. Wang, “Highly efficient and compact laser-diode end-pumped Q-switched Nd:YVO4/KTP red laser,” Opt. Commun. 281(4), 803–807 (2008).
[CrossRef]

Zhao, H. M.

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[CrossRef]

Zhao, S.

H. T. Huang, J. L. He, C. H. Zuo, B. T. Zhang, X. L. Dong, S. Zhao, and Y. Wang, “Highly efficient and compact laser-diode end-pumped Q-switched Nd:YVO4/KTP red laser,” Opt. Commun. 281(4), 803–807 (2008).
[CrossRef]

Zhao, S. Z.

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[CrossRef]

Zheng, Q.

Zondy, J.-J.

Zuo, C. H.

H. T. Huang, J. L. He, C. H. Zuo, B. T. Zhang, X. L. Dong, S. Zhao, and Y. Wang, “Highly efficient and compact laser-diode end-pumped Q-switched Nd:YVO4/KTP red laser,” Opt. Commun. 281(4), 803–807 (2008).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (3)

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[CrossRef]

K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28(10), 1974–1976 (1992).
[CrossRef]

S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in Lithium Triborate (LBO),” IEEE J. Quantum Electron. 27(9), 2182–2192 (1991).
[CrossRef]

Opt. Commun. (2)

H. T. Huang, J. L. He, C. H. Zuo, B. T. Zhang, X. L. Dong, S. Zhao, and Y. Wang, “Highly efficient and compact laser-diode end-pumped Q-switched Nd:YVO4/KTP red laser,” Opt. Commun. 281(4), 803–807 (2008).
[CrossRef]

Z. Y. Ren, Z. M. Huang, S. Jia, Y. Ge, and J. T. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282(2), 263–266 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Calculated temperature tuning curves of KTP obtained with Intra-SHG and Extra-SHG configuration.

Fig. 2
Fig. 2

Calculated temperature tuning curves of LBO obtained with Intra-SHG and Extra-SHG configuration.

Fig. 3
Fig. 3

Calculated tuning curves of fundamental photon density and pulse width obtained with Intra-SHG KTP configuration. The corresponding Intra-SHG temperature tuning curve and sinc2 function are also given.

Fig. 4
Fig. 4

Calculated tuning curves of fundamental photon density and pulse width obtained with Intra-SHG LBO configuration. The corresponding Intra-SHG temperature tuning curve and sinc2 function are also given.

Fig. 5
Fig. 5

Schematic diagrams of the Intra-SHG and Extra-SHG configuration.

Fig. 6
Fig. 6

Calculated Intra-SHG temperature tuning curves for GTR-KTP and common KTP.

Fig. 7
Fig. 7

Experimentally obtained temperature tuning curves obtained with Intra-SHG and Extra-SHG configuration for GTR-KTP (a) and common KTP (b).

Fig. 8
Fig. 8

Experimentally obtained temperature tuning curves of LBO obtained with Intra-SHG and Extra-SHG configuration.

Tables (1)

Tables Icon

Table 1 Corresponding Parameters for the Theoretical Calculation

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δk= 4π λ 0 [ 1 2 ( n e ω T + n o ω T ) n o 2ω T ]ΔT, fo r o+eo Δk= 4π λ 0 [ 1 2 ( n e ω T + n o ω T ) n e 2ω T ]ΔT, fo r o+ee
dϕ dt = ϕ t r [2σΔn l g δ T δ N L] dΔn dt = R p cσϕΔn Δn τ l
δ N = 2 ω 2 d eff 2 l 2 c 2 ε 0 n o 2ω n e ω n o ω hνϕsin c 2 ( Δkl 2 ) fo r o+eo δ N = 2 ω 2 d eff 2 l 2 c 2 ε 0 n e 2ω n e ω n o ω hνϕsin c 2 ( Δkl 2 ) fo r o+ee
Δn(0)= R p τ l [1exp( 1 f τ l )]
P=ζ 2 ω 2 d eff 2 l 2 c 2 ε 0 n o 2ω n e ω n o ω sin c 2 ( Δkl 2 )π w o 2 (hν) 2 ( ϕ m ) 2 fτ

Metrics