Abstract

The inverse problem for Surface Plasmon Resonance measurements [1] on a thin layer of aluminium in the Kretschmann configuration, is solved with a Particle Swarm Optimization method. The optical indexes as well as the geometrical parameters are found for the best fit of the experimental reflection coefficient in s and p polarization, for four samples, under three theoretical hypothesis on materials: the metal layer is pure, melted with its oxyde, or coated with oxyde. The influence of the thickness of the metal layer on its optical properties is then investigated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40–44 (1959).
    [CrossRef]
  2. E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflachenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
    [CrossRef]
  3. A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3, 254–258 (1971).
    [CrossRef]
  4. D. Macias and D. Barchiesi, “Identification of unknown experimental parameters from noisy apertureless scanning near-field optical microscope data with an evolutionary procedure,” Opt. Lett. 30, 2557–2559 (2005).
    [CrossRef] [PubMed]
  5. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IV) (IEEE, 1995), pp. 1942–1948.
  6. S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. 2, 18–28 (2011).
    [CrossRef]
  7. S. Kessentini, D. Barchiesi, T. Grosges, and M. Lamy de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2010), pp. 2315–2320.
  8. M. Clerc, “A method to improve standard PSO,” Tech. Rep. DRAFT MC2009-03-13, France Telecom R&D (2009).
  9. H. P. Schwefel, Evolution and Optimum Seeking (John Wiley & Sons Inc., 1995).
  10. D. Macías, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in near-nield optics,” J. Opt. Soc. Am. A 21, 1465–1471 (2004).
    [CrossRef]
  11. D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in “Proceedings of IEEE International Conference on Computers & Industrial Engineering (CIE)” (IEEE, 2009), 542–547.
  12. E. Kretschmann, “The ATR method with focused light - application to guided waves on a grating,” Opt. Commun. 23, 41–44 (1978).
    [CrossRef]
  13. D. Barchiesi, “Optimization of biosensors,” in New Perspectives in biosensors technology and applications, P. A. Serra, ed. (INTECH Open Access, Rijeka, Croatia, 2011), pp. 105–126.
  14. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substantzen. i. dielektrizitätskonstanten und leifähigkeiten der misckörper aus isotropen substanzen,” Ann. Phys. (Leipzig) 24, 636–679 (1935).
  15. A. J. Abu El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
    [CrossRef]
  16. W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3903 (1973).
    [CrossRef]
  17. S. W. Dean, D. Knotkova, and K. Kreislovain ISOCORRAG International Atmospheric Exposure Program: Summary of Results, DS71 (ASTM International, 2010).
  18. D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: Influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B 93, 177–181 (2008).
    [CrossRef]
  19. D. Barchiesi, N. Lidgi-Guigui, and M. Lamy de la Chapelle, “Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor,” Opt. Commun. 285, 1619–1623 (2012).
    [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants (Academic Press Inc., 1985).
  21. Z. W. Zhao, B. K. T. abd L. Huang, S. Lau, and J. X. Gao, “Influence of thermal annealing on optical properties and structure of aluminium oxide thin films by filtered cathodic vacuum arc,” Opt. Mater. 27, 465–469 (2004).
    [CrossRef]
  22. W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell garnett and bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997).
    [CrossRef]
  23. A. Vial, T. Laroche, and M. Roussey, “Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 91, 123101 (2007).
  24. A. Otto, “Spectroscopy of surface polaritons by attenuated total reflection” in Optical properties of solids - new developments (North Holland, 1974), pp. 679–729.
  25. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  26. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16, 20227–20240, (2008).
    [CrossRef] [PubMed]
  27. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
    [CrossRef]
  28. A. Kolomenskii, P. Gershon, and H. Schuessler, “Sensitivity and detection limit of concentration and absorption measurements by laser-induced surface-plasmon resonance,” Appl. Opt. 36, 6539–6547 (1997).
    [CrossRef]
  29. D. Y. K. Ko and J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: Attenuated total reflection studies of liquid crystals,” J. Opt. Soc. Am. A 5, 1863–1866 (1988).
    [CrossRef]
  30. J. M. Vigoureux, “Polynomial formulation of reflection and transmission by stratified planar structures,” J. Opt. Soc. Am. A 8, 1697–1701 (1991).
    [CrossRef]
  31. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [CrossRef]
  32. D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy 229, 525–532 (2008).
    [CrossRef]
  33. P. Sandoz, T. Gharbi, and G. Tribillon, “Phase-shifting methods for interferometers using laser-diode frequency-modulation,” Opt. Commun. 132, 227–231 (1996).
    [CrossRef]
  34. A. Courteville, T. Gharbi, and J. Y. Cornu, “Noncontact MMG sensor based on the optical feedback effect in a laser diode,” J. Biomed. Opt. 3, 281–285 (1998).
    [CrossRef]
  35. B. Guizal and D. Felbacq, “Electromagnetic beam diffraction by a finite strip grating,” Opt. Commun. 165, 1–6 (1999).
    [CrossRef]
  36. F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, “Extraordinary transmission beyond the cut-off through sub-λ annular aperture arrays,” Opt. Commun. 282, 1463–1466 (2009).
    [CrossRef]

2012 (1)

D. Barchiesi, N. Lidgi-Guigui, and M. Lamy de la Chapelle, “Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor,” Opt. Commun. 285, 1619–1623 (2012).
[CrossRef]

2011 (1)

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. 2, 18–28 (2011).
[CrossRef]

2009 (1)

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, “Extraordinary transmission beyond the cut-off through sub-λ annular aperture arrays,” Opt. Commun. 282, 1463–1466 (2009).
[CrossRef]

2008 (3)

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16, 20227–20240, (2008).
[CrossRef] [PubMed]

D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy 229, 525–532 (2008).
[CrossRef]

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: Influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B 93, 177–181 (2008).
[CrossRef]

2007 (1)

A. Vial, T. Laroche, and M. Roussey, “Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 91, 123101 (2007).

2005 (2)

2004 (2)

D. Macías, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in near-nield optics,” J. Opt. Soc. Am. A 21, 1465–1471 (2004).
[CrossRef]

Z. W. Zhao, B. K. T. abd L. Huang, S. Lau, and J. X. Gao, “Influence of thermal annealing on optical properties and structure of aluminium oxide thin films by filtered cathodic vacuum arc,” Opt. Mater. 27, 465–469 (2004).
[CrossRef]

2003 (1)

A. J. Abu El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
[CrossRef]

1999 (1)

B. Guizal and D. Felbacq, “Electromagnetic beam diffraction by a finite strip grating,” Opt. Commun. 165, 1–6 (1999).
[CrossRef]

1998 (1)

A. Courteville, T. Gharbi, and J. Y. Cornu, “Noncontact MMG sensor based on the optical feedback effect in a laser diode,” J. Biomed. Opt. 3, 281–285 (1998).
[CrossRef]

1997 (2)

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell garnett and bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997).
[CrossRef]

A. Kolomenskii, P. Gershon, and H. Schuessler, “Sensitivity and detection limit of concentration and absorption measurements by laser-induced surface-plasmon resonance,” Appl. Opt. 36, 6539–6547 (1997).
[CrossRef]

1996 (2)

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
[CrossRef]

P. Sandoz, T. Gharbi, and G. Tribillon, “Phase-shifting methods for interferometers using laser-diode frequency-modulation,” Opt. Commun. 132, 227–231 (1996).
[CrossRef]

1991 (1)

1988 (1)

1978 (1)

E. Kretschmann, “The ATR method with focused light - application to guided waves on a grating,” Opt. Commun. 23, 41–44 (1978).
[CrossRef]

1973 (1)

W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3903 (1973).
[CrossRef]

1971 (2)

E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflachenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3, 254–258 (1971).
[CrossRef]

1959 (1)

T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40–44 (1959).
[CrossRef]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substantzen. i. dielektrizitätskonstanten und leifähigkeiten der misckörper aus isotropen substanzen,” Ann. Phys. (Leipzig) 24, 636–679 (1935).

Abu El-Haija, A. J.

A. J. Abu El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
[CrossRef]

Baida, F. I.

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, “Extraordinary transmission beyond the cut-off through sub-λ annular aperture arrays,” Opt. Commun. 282, 1463–1466 (2009).
[CrossRef]

Barchiesi, D.

D. Barchiesi, N. Lidgi-Guigui, and M. Lamy de la Chapelle, “Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor,” Opt. Commun. 285, 1619–1623 (2012).
[CrossRef]

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. 2, 18–28 (2011).
[CrossRef]

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: Influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B 93, 177–181 (2008).
[CrossRef]

D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy 229, 525–532 (2008).
[CrossRef]

D. Macias and D. Barchiesi, “Identification of unknown experimental parameters from noisy apertureless scanning near-field optical microscope data with an evolutionary procedure,” Opt. Lett. 30, 2557–2559 (2005).
[CrossRef] [PubMed]

D. Macías, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in near-nield optics,” J. Opt. Soc. Am. A 21, 1465–1471 (2004).
[CrossRef]

S. Kessentini, D. Barchiesi, T. Grosges, and M. Lamy de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2010), pp. 2315–2320.

D. Barchiesi, “Optimization of biosensors,” in New Perspectives in biosensors technology and applications, P. A. Serra, ed. (INTECH Open Access, Rijeka, Croatia, 2011), pp. 105–126.

D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in “Proceedings of IEEE International Conference on Computers & Industrial Engineering (CIE)” (IEEE, 2009), 542–547.

Belmar-Letellier, L.

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: Influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B 93, 177–181 (2008).
[CrossRef]

Blossey, D. F.

W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3903 (1973).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substantzen. i. dielektrizitätskonstanten und leifähigkeiten der misckörper aus isotropen substanzen,” Ann. Phys. (Leipzig) 24, 636–679 (1935).

Clerc, M.

M. Clerc, “A method to improve standard PSO,” Tech. Rep. DRAFT MC2009-03-13, France Telecom R&D (2009).

Cornu, J. Y.

A. Courteville, T. Gharbi, and J. Y. Cornu, “Noncontact MMG sensor based on the optical feedback effect in a laser diode,” J. Biomed. Opt. 3, 281–285 (1998).
[CrossRef]

Courteville, A.

A. Courteville, T. Gharbi, and J. Y. Cornu, “Noncontact MMG sensor based on the optical feedback effect in a laser diode,” J. Biomed. Opt. 3, 281–285 (1998).
[CrossRef]

Dean, S. W.

S. W. Dean, D. Knotkova, and K. Kreislovain ISOCORRAG International Atmospheric Exposure Program: Summary of Results, DS71 (ASTM International, 2010).

Eberhart, R.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IV) (IEEE, 1995), pp. 1942–1948.

Felbacq, D.

B. Guizal and D. Felbacq, “Electromagnetic beam diffraction by a finite strip grating,” Opt. Commun. 165, 1–6 (1999).
[CrossRef]

Gao, J. X.

Z. W. Zhao, B. K. T. abd L. Huang, S. Lau, and J. X. Gao, “Influence of thermal annealing on optical properties and structure of aluminium oxide thin films by filtered cathodic vacuum arc,” Opt. Mater. 27, 465–469 (2004).
[CrossRef]

Gershon, P.

Gharbi, T.

A. Courteville, T. Gharbi, and J. Y. Cornu, “Noncontact MMG sensor based on the optical feedback effect in a laser diode,” J. Biomed. Opt. 3, 281–285 (1998).
[CrossRef]

P. Sandoz, T. Gharbi, and G. Tribillon, “Phase-shifting methods for interferometers using laser-diode frequency-modulation,” Opt. Commun. 132, 227–231 (1996).
[CrossRef]

Giraud-Moreau, L.

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. 2, 18–28 (2011).
[CrossRef]

Grosges, T.

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. 2, 18–28 (2011).
[CrossRef]

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: Influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B 93, 177–181 (2008).
[CrossRef]

D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy 229, 525–532 (2008).
[CrossRef]

S. Kessentini, D. Barchiesi, T. Grosges, and M. Lamy de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2010), pp. 2315–2320.

Guizal, B.

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, “Extraordinary transmission beyond the cut-off through sub-λ annular aperture arrays,” Opt. Commun. 282, 1463–1466 (2009).
[CrossRef]

B. Guizal and D. Felbacq, “Electromagnetic beam diffraction by a finite strip grating,” Opt. Commun. 165, 1–6 (1999).
[CrossRef]

Huang, B. K. T. abd L.

Z. W. Zhao, B. K. T. abd L. Huang, S. Lau, and J. X. Gao, “Influence of thermal annealing on optical properties and structure of aluminium oxide thin films by filtered cathodic vacuum arc,” Opt. Mater. 27, 465–469 (2004).
[CrossRef]

Kats, A. V.

Kennedy, J.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IV) (IEEE, 1995), pp. 1942–1948.

Kessentini, S.

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. 2, 18–28 (2011).
[CrossRef]

S. Kessentini, D. Barchiesi, T. Grosges, and M. Lamy de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2010), pp. 2315–2320.

Knotkova, D.

S. W. Dean, D. Knotkova, and K. Kreislovain ISOCORRAG International Atmospheric Exposure Program: Summary of Results, DS71 (ASTM International, 2010).

Ko, D. Y. K.

Kolomenskii, A.

Kreislova, K.

S. W. Dean, D. Knotkova, and K. Kreislovain ISOCORRAG International Atmospheric Exposure Program: Summary of Results, DS71 (ASTM International, 2010).

Kremer, E.

D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy 229, 525–532 (2008).
[CrossRef]

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: Influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B 93, 177–181 (2008).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “The ATR method with focused light - application to guided waves on a grating,” Opt. Commun. 23, 41–44 (1978).
[CrossRef]

E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflachenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Lakhtakia, A.

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell garnett and bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997).
[CrossRef]

Lamy de la Chapelle, M.

D. Barchiesi, N. Lidgi-Guigui, and M. Lamy de la Chapelle, “Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor,” Opt. Commun. 285, 1619–1623 (2012).
[CrossRef]

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. 2, 18–28 (2011).
[CrossRef]

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: Influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B 93, 177–181 (2008).
[CrossRef]

S. Kessentini, D. Barchiesi, T. Grosges, and M. Lamy de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2010), pp. 2315–2320.

Laroche, T.

A. Vial, T. Laroche, and M. Roussey, “Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 91, 123101 (2007).

Lau, S.

Z. W. Zhao, B. K. T. abd L. Huang, S. Lau, and J. X. Gao, “Influence of thermal annealing on optical properties and structure of aluminium oxide thin films by filtered cathodic vacuum arc,” Opt. Mater. 27, 465–469 (2004).
[CrossRef]

Li, L.

Lidgi-Guigui, N.

D. Barchiesi, N. Lidgi-Guigui, and M. Lamy de la Chapelle, “Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor,” Opt. Commun. 285, 1619–1623 (2012).
[CrossRef]

Macias, D.

Macías, D.

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: Influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B 93, 177–181 (2008).
[CrossRef]

D. Macías, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in near-nield optics,” J. Opt. Soc. Am. A 21, 1465–1471 (2004).
[CrossRef]

Mai, V.

D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy 229, 525–532 (2008).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Michel, B.

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell garnett and bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997).
[CrossRef]

Moreau, L.

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: Influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B 93, 177–181 (2008).
[CrossRef]

Nesterov, M. L.

Otto, A.

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3, 254–258 (1971).
[CrossRef]

A. Otto, “Spectroscopy of surface polaritons by attenuated total reflection” in Optical properties of solids - new developments (North Holland, 1974), pp. 679–729.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants (Academic Press Inc., 1985).

Poujet, Y.

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, “Extraordinary transmission beyond the cut-off through sub-λ annular aperture arrays,” Opt. Commun. 282, 1463–1466 (2009).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Roussey, M.

A. Vial, T. Laroche, and M. Roussey, “Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 91, 123101 (2007).

Salvi, J.

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, “Extraordinary transmission beyond the cut-off through sub-λ annular aperture arrays,” Opt. Commun. 282, 1463–1466 (2009).
[CrossRef]

Sambles, J. R.

Sandoz, P.

P. Sandoz, T. Gharbi, and G. Tribillon, “Phase-shifting methods for interferometers using laser-diode frequency-modulation,” Opt. Commun. 132, 227–231 (1996).
[CrossRef]

Schuessler, H.

Schwefel, H. P.

H. P. Schwefel, Evolution and Optimum Seeking (John Wiley & Sons Inc., 1995).

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Sohler, W.

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3, 254–258 (1971).
[CrossRef]

Tinga, W. R.

W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3903 (1973).
[CrossRef]

Toury, T.

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: Influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B 93, 177–181 (2008).
[CrossRef]

Tribillon, G.

P. Sandoz, T. Gharbi, and G. Tribillon, “Phase-shifting methods for interferometers using laser-diode frequency-modulation,” Opt. Commun. 132, 227–231 (1996).
[CrossRef]

Turbadar, T.

T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40–44 (1959).
[CrossRef]

Turitsyn, S. K.

Van Labeke, D.

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, “Extraordinary transmission beyond the cut-off through sub-λ annular aperture arrays,” Opt. Commun. 282, 1463–1466 (2009).
[CrossRef]

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: Influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B 93, 177–181 (2008).
[CrossRef]

Vial, A.

A. Vial, T. Laroche, and M. Roussey, “Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 91, 123101 (2007).

D. Macías, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in near-nield optics,” J. Opt. Soc. Am. A 21, 1465–1471 (2004).
[CrossRef]

Vigoureux, J. M.

Voss, W. A. G.

W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3903 (1973).
[CrossRef]

Weiglhofer, W. S.

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell garnett and bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Zhao, Z. W.

Z. W. Zhao, B. K. T. abd L. Huang, S. Lau, and J. X. Gao, “Influence of thermal annealing on optical properties and structure of aluminium oxide thin films by filtered cathodic vacuum arc,” Opt. Mater. 27, 465–469 (2004).
[CrossRef]

Ann. Phys. (Leipzig) (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substantzen. i. dielektrizitätskonstanten und leifähigkeiten der misckörper aus isotropen substanzen,” Ann. Phys. (Leipzig) 24, 636–679 (1935).

Appl. Opt. (1)

Appl. Phys. B (1)

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: Influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B 93, 177–181 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

A. Vial, T. Laroche, and M. Roussey, “Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 91, 123101 (2007).

Int. J. Appl. Metaheuristic Comput. (1)

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. 2, 18–28 (2011).
[CrossRef]

J. Appl. Phys. (2)

A. J. Abu El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
[CrossRef]

W. R. Tinga, W. A. G. Voss, and D. F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, 3897–3903 (1973).
[CrossRef]

J. Biomed. Opt. (1)

A. Courteville, T. Gharbi, and J. Y. Cornu, “Noncontact MMG sensor based on the optical feedback effect in a laser diode,” J. Biomed. Opt. 3, 281–285 (1998).
[CrossRef]

J. Microscopy (1)

D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy 229, 525–532 (2008).
[CrossRef]

J. Opt. Soc. Am. A (4)

Microw. Opt. Technol. Lett. (1)

W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell garnett and bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997).
[CrossRef]

Opt. Commun. (6)

P. Sandoz, T. Gharbi, and G. Tribillon, “Phase-shifting methods for interferometers using laser-diode frequency-modulation,” Opt. Commun. 132, 227–231 (1996).
[CrossRef]

B. Guizal and D. Felbacq, “Electromagnetic beam diffraction by a finite strip grating,” Opt. Commun. 165, 1–6 (1999).
[CrossRef]

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, “Extraordinary transmission beyond the cut-off through sub-λ annular aperture arrays,” Opt. Commun. 282, 1463–1466 (2009).
[CrossRef]

D. Barchiesi, N. Lidgi-Guigui, and M. Lamy de la Chapelle, “Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor,” Opt. Commun. 285, 1619–1623 (2012).
[CrossRef]

E. Kretschmann, “The ATR method with focused light - application to guided waves on a grating,” Opt. Commun. 23, 41–44 (1978).
[CrossRef]

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3, 254–258 (1971).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

Z. W. Zhao, B. K. T. abd L. Huang, S. Lau, and J. X. Gao, “Influence of thermal annealing on optical properties and structure of aluminium oxide thin films by filtered cathodic vacuum arc,” Opt. Mater. 27, 465–469 (2004).
[CrossRef]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Proc. Phys. Soc. (1)

T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40–44 (1959).
[CrossRef]

Z. Phys. (1)

E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflachenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Other (10)

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IV) (IEEE, 1995), pp. 1942–1948.

D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in “Proceedings of IEEE International Conference on Computers & Industrial Engineering (CIE)” (IEEE, 2009), 542–547.

A. Otto, “Spectroscopy of surface polaritons by attenuated total reflection” in Optical properties of solids - new developments (North Holland, 1974), pp. 679–729.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

D. Barchiesi, “Optimization of biosensors,” in New Perspectives in biosensors technology and applications, P. A. Serra, ed. (INTECH Open Access, Rijeka, Croatia, 2011), pp. 105–126.

E. D. Palik, Handbook of Optical Constants (Academic Press Inc., 1985).

S. W. Dean, D. Knotkova, and K. Kreislovain ISOCORRAG International Atmospheric Exposure Program: Summary of Results, DS71 (ASTM International, 2010).

S. Kessentini, D. Barchiesi, T. Grosges, and M. Lamy de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2010), pp. 2315–2320.

M. Clerc, “A method to improve standard PSO,” Tech. Rep. DRAFT MC2009-03-13, France Telecom R&D (2009).

H. P. Schwefel, Evolution and Optimum Seeking (John Wiley & Sons Inc., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup used in Ref. [1].

Fig. 2
Fig. 2

Experimental data from Ref. [1] for an evaluation of the thickness of the deposition h1 = 2.5 nm (circles) and computed data for the best parameters (see Tab. 1).

Fig. 3
Fig. 3

Experimental data from Ref. [1] for an evaluation of the thickness of the deposition h1 = 8.0 nm (circles) and computed data for the best parameters (see Tab. 1).

Fig. 4
Fig. 4

Experimental data from Ref. [1] for an evaluation of the thickness of the deposition h1 = 12.5 nm (circles) and computed data for the best parameters (see Tab. 1).

Fig. 5
Fig. 5

Experimental data from Ref. [1] for an evaluation of the thickness of the deposition h1 = 19.0 nm (circles) and computed data for the best parameters (see Tab. 1).

Fig. 6
Fig. 6

Computed reflectance Rt for p polarization (a) and s polarization (b), in the case of very small thickness. The result is compared to DL0 and DL1.

Fig. 7
Fig. 7

Computed reflectance Rt for p polarization (a) and s polarization (b), in the case of small thickness. The result is compared to DL0 and DL1.

Fig. 8
Fig. 8

Computed reflectance Rt for p polarization (a) and s polarization (b), in the case of intermediate thickness. The result is compared to DL0 and DL1.

Fig. 9
Fig. 9

Computed reflectance Rt for p polarization (a) and s polarization (b), in the case of intermediate thickness. The result is compared to DL0 and DL1.

Fig. 10
Fig. 10

Experimental data, real and imaginary part of the determinant D(S−1). The parameters are given in Tab. 1 for the model H1a.

Fig. 11
Fig. 11

Experimental data, real and imaginary part of the determinant D(S−1). The parameters are given in Tab. 1 for the model H1a.

Tables (2)

Tables Icon

Table 1 Fitness Function F (Eq. 1), the Best Optical Index of the Prism n1, the Best Thickness e Corresponding to hi, the Indicative Thickness, and the Corresponding Relative Permittivity ε2 of the Layer*

Tables Icon

Table 2 Rounded Numerical Values of fe = exp(2ιew2) Involved in the Reflectance Formula (Eq. 4 and 9)

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

F = ( R p R p t ) 2 + ( R s R s t ) 2 .
V ( t + 1 ) = ω V ( t ) + U 1 c 1 ( p ( t ) x ( t ) ) + U 2 c 2 ( g ( t ) x ( t ) )
x ( t + 1 ) = x ( t ) + V ( t + 1 )
R t = | r 1 2 + r 2 3 exp ( 2 ι e w 2 ) 1 + r 1 2 r 2 3 exp ( 2 ι e w 2 ) | 2 | 1 ( r 0 1 ) 2 | 2 .
r i i + 1 = w i w i + 1 w i + w i + 1   in (s) polarization ,
r i i + 1 = ε i + 1 w i ε i w i + 1 ε i + 1 w i + ε i w i + 1   in (p) polarization.
ε 2 = f o ε A l 2 O 3 + ( 1 f o ) ε A l ,
ε 2 = ε A l ( 1 + 2 f o ) ε A l 2 O 3 + 2 ( 1 f o ) ε A l ( 1 f o ) ε A l 2 O 3 + ( f o + 2 ) ε A l .
R t = | r ( r 0 1 ) 2 | 2 . | r 1 2 + r 2 3 e 2 ι e 2 w 2 + r 3 4 e 2 ι ( e 2 w 2 + e 3 w 3 ) + r 1 2 r 2 3 r 3 4 e 2 ι e 3 w 3 1 + r 1 2 r 2 3 exp ( 2 ι e 2 w 2 ) + r 1 2 r 3 4 e 2 ι ( e 2 w 2 + e 3 w 3 ) + r 2 3 r 3 4 e 2 ι e 3 w 3 | 2 .
R t = | r 1 2 + r 2 3 1 + r 1 2 r 2 3 D L 0 + r 2 3 ( 1 ( r 1 2 ) 2 ) ( 1 + r 1 2 r 2 3 ) 2 ( f e 1 ) + o ( f e 1 ) 2 | 2 . | 1 ( r 0 1 ) 2 | 2
R t = | r 1 2 + r 2 3 . ( 1 ( r 1 2 ) 2 ) f e D L 1 + o ( f e ) 2 | 2 . | 1 ( r 0 1 ) 2 | 2
S = ( t 1 2 t 2 3 1 + r 1 2 r 2 3 e 2 ι w 2 e e ι ( w 2 w 3 ) e r 2 3 r 1 2 e 2 ι w 2 e 1 + r 1 2 r 2 3 e 2 ι w 2 e e ι w 3 e r 1 2 + r 2 3 e 2 ι w 2 e 1 + r 1 2 r 2 3 e 2 ι w 2 e t 1 2 t 3 2 1 + r 1 2 r 2 3 e 2 ι w 2 e e ι ( w 2 w 3 ) e )
S 1 = ( t 2 1 t 3 2 r 1 2 r 2 3 + e 2 ι w 3 e e ι ( w 2 + w 3 ) e r 2 3 + r 1 2 e 2 ι w 2 e r 1 2 r 2 3 + e 2 ι w 2 e r 1 2 + r 2 3 e 2 ι w 2 e r 1 2 r 2 3 + e 2 ι w 2 e e 2 ι w 3 e t 1 2 t 2 3 r 1 2 r 2 3 + e 2 ι w 2 e e ι ( w 2 + w 3 ) e )
D ( S 1 ) = 1 + r 1 2 r 2 3 e 2 ι w 2 e r 1 2 r 2 3 + e 2 ι w 2 e

Metrics