Abstract

The observation of spatial angle dependent lasing from a dye-doped two-dimensional photonic crystal (2D PC) holographic polymer dispersed liquid crystals made of hexagonal lattice structure is reported. With the increasing output angle of the laser beam in the plane perpendicular to the 2D PC, the lasing wavelength is red-shifted. By analyzing the lasing oscillation trace, we found that the effective lattice constant changes with the output angle, causing the spatial angle dependent lasing.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light (Princeton University Press, 1995).
  3. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
    [CrossRef]
  4. Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
    [CrossRef]
  5. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10(20), 1074–1082 (2002).
    [PubMed]
  6. K. Sakoda, “Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,” Opt. Express 4(5), 167–176 (1999).
    [CrossRef] [PubMed]
  7. G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
    [CrossRef]
  8. R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
    [CrossRef]
  9. R. Jakubiak, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. Lloyd, T. J. Bunning, and R. A. Vaia, “Dynamic lasing from all-organic two-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(23), 2807–2811 (2005).
    [CrossRef]
  10. D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
    [CrossRef]
  11. D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
    [CrossRef]
  12. D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
    [CrossRef]
  13. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
    [CrossRef]

2010 (2)

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[CrossRef]

2009 (1)

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[CrossRef]

2006 (1)

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[CrossRef]

2005 (1)

R. Jakubiak, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. Lloyd, T. J. Bunning, and R. A. Vaia, “Dynamic lasing from all-organic two-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(23), 2807–2811 (2005).
[CrossRef]

2004 (1)

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

2003 (1)

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

2002 (1)

2000 (2)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
[CrossRef]

1999 (1)

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Bunning, T. J.

R. Jakubiak, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. Lloyd, T. J. Bunning, and R. A. Vaia, “Dynamic lasing from all-organic two-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(23), 2807–2811 (2005).
[CrossRef]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10(20), 1074–1082 (2002).
[PubMed]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Cartwright, A. N.

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Chandra, S.

Dai, H. T.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[CrossRef]

Demir, H. V.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[CrossRef]

He, G. S.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Hsiao, V. K. S.

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Jakubiak, R.

R. Jakubiak, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. Lloyd, T. J. Bunning, and R. A. Vaia, “Dynamic lasing from all-organic two-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(23), 2807–2811 (2005).
[CrossRef]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Ji, W.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[CrossRef]

Lin, T.-C.

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Liu, Y. J.

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[CrossRef]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[CrossRef]

Lloyd, P.

R. Jakubiak, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. Lloyd, T. J. Bunning, and R. A. Vaia, “Dynamic lasing from all-organic two-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(23), 2807–2811 (2005).
[CrossRef]

Luo, D.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[CrossRef]

Natarajan, L. V.

R. Jakubiak, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. Lloyd, T. J. Bunning, and R. A. Vaia, “Dynamic lasing from all-organic two-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(23), 2807–2811 (2005).
[CrossRef]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10(20), 1074–1082 (2002).
[PubMed]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Notomi, M.

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
[CrossRef]

Prasad, P. N.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Sakoda, K.

Sun, X. W.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[CrossRef]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[CrossRef]

Sutherland, R. L.

R. Jakubiak, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. Lloyd, T. J. Bunning, and R. A. Vaia, “Dynamic lasing from all-organic two-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(23), 2807–2811 (2005).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10(20), 1074–1082 (2002).
[PubMed]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Tomlin, D.

Tondiglia, V.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

Tondiglia, V. P.

R. Jakubiak, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. Lloyd, T. J. Bunning, and R. A. Vaia, “Dynamic lasing from all-organic two-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(23), 2807–2811 (2005).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10(20), 1074–1082 (2002).
[PubMed]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Vaia, R. A.

R. Jakubiak, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. Lloyd, T. J. Bunning, and R. A. Vaia, “Dynamic lasing from all-organic two-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(23), 2807–2811 (2005).
[CrossRef]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yang, H. Z.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

R. Jakubiak, V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, P. Lloyd, T. J. Bunning, and R. A. Vaia, “Dynamic lasing from all-organic two-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 17(23), 2807–2811 (2005).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Appl. Phys. Lett. (5)

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[CrossRef]

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[CrossRef]

J. Appl. Phys. (1)

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Other (1)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light (Princeton University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The specially designed prism, (b) three-beam interference configuration, and (c) schematic of the optical setup [10]. (d) Simulated intensity distribution of the three-beam interference pattern. (e) AFM image showing the surface morphology of the 2D hexagonal H-PDLC PCs. Scalar bar: 500 nm.

Fig. 2
Fig. 2

Optical setup of the lasing experiment. The laser spectrum on the right side is measured near the sample at point N (1 mm away from the sample). The laser image obtained on a screen at the far distance of 6 cm away from the sample is shown, along with a magnified image of one of the laser spots zoomed in the upper left. The measured positions were marked from A to F along the horizontal z axis, as well as the additional points C1 and C2 for comparison purpose. The point O is marked on the midline.

Fig. 3
Fig. 3

Lasing spectrum measured at the far positions from A to F (all at a surface-normal distance of 6 cm), with the pumping power of 250 μJ/pulse: (a)-(f), corresponding to the spectrum measured at the position of A to F, respectively. All of these figures also show the spectrum recorded at point N (in dashed lines) on the background for comparison purpose. The inset figure shows the relationship of peak intensity verse pumping power.

Fig. 4
Fig. 4

(a) Structure of the H-PDLC PC sample shown with the directions of pumping and output laser. (b) Cross-section of the y-z plane of the H-PDLC PC sample (dash rectangle in (a)). γ and β represents the incident angle in the sample and the output angle outside the sample, respectively. Different laser beams are represented by the solid red lines labeled a and f. (c) Photonic band structure of the 2D H-PDLC PC with a hexagonal lattice. Both TE and TM polarizations are represented. The lasing generation region is marked by a circle.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I(r)=( i,j=1 3 E i E j exp[i( k i k j )r] ),
n air sinβ= n HPDLC sinγ

Metrics