Abstract

The extended-reach broadband access network is widely acknowledged as a future-proof solution to providing bandwidth-intensive services to an increased number of users spread across a large geographical area. To address fiber failure detection and reliability issues specific to these networks, a simple automatic protection switching and pump laser shutdown scheme that exploits the use of highly-sensitive and fast-responding monitoring modules is proposed and experimentally demonstrated in this work. We also present an analytical model that describes the probability distribution function of the response time, thus allowing the mean response time, jitter, and sensitivity to be evaluated. Our results show a high sensitivity of < −50 dBm can be achieved, thus allowing the module to be applied in topologies with extended reach and/or split ratio beyond that of conventional PONs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Effenberger, J.-i. Kani, and Y. Maeda, “Standardization trends and prospective views on the next generation of broadband optical access systems,” IEEE J. Sel. Areas Commun. 28(6), 773–780 (2010).
    [CrossRef]
  2. K. Iwatsuki and J.-i. Kani, “Applications and technical Issues of wavelength-division multiplexing passive optical networks with colorless optical network units [Invited],” J. Opt. Commun. Netw. 1(4), C17–C24 (2009).
    [CrossRef]
  3. E. Wong, “Passive optical networks: current and next-generation technologies,” (Invited Paper), in Proc. IEEE/OSA Opt. Fiber Communication Conference Los Angeles, California, USA, NMD1 (2011).
  4. L. Mehedy, M. Bakaul, A. Nirmalathas, and E. Skafidas, “Scalable and spectrally efficient long-reach optical access networks employing frequency interleaved directly detected optical OFDM,” J. Opt. Commun. Netw. 3(11), 881–890 (2011).
    [CrossRef]
  5. S.-M. Lee, S.-G. Mun, M.-H. Kim, and C.-H. Lee, “Demonstration of a long-reach DWDM-PON for consolidation of metro and access networks,” J. Lightwave Technol. 25(1), 271–276 (2007).
    [CrossRef]
  6. L. G. Kazovsky, S.-W. Wong, V. Gudla, P. T. Afshar, S.-H. Yen, S. Yamashita, and Y. Yan, “Challenges in next-generation optical access networks: addressing reach extension and security weaknesses,” IET Optoelectron. 5(4), 133–143 (2011).
    [CrossRef]
  7. E. Wong and K. L. Lee, “Automatic protection, restoration and survivability of long-reach passive optical networks,” in Proc. IEEE Int. Conference on Communication (ICC), Kyoto, Japan, paper SAC ASN-P (2011).
  8. K. L. Lee, J. L. Riding, A. V. Tran, and R. S. Tucker, “Extended-reach GPON for rural areas using distributed raman amplfiers,” in Proc. IEEE/OSA Opt. Fiber Communication Conference, San Diego, CA, NME3 (2009).
  9. T.-K. Chan, C.-K. Chan, L.-K. Chen, and F. Tong, “A self-protected architecture for wavelength-division-multiplexed passive optical networks,” IEEE Photon. Technol. Lett. 15(11), 1660–1662 (2003).
    [CrossRef]
  10. Y. Hsueh, W. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “SUCCESS PON demonstrator: experimental exploration of next-generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
    [CrossRef]
  11. F. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky, “SUCCESS-HPON: a nextgeneration optical access architecture for smooth migration from TDM-PON to WDM-PON,” IEEE Commun. Mag. 43(11), S40–S47 (2005).
    [CrossRef]
  12. N. Nadarajah, E. Wong, M. Attygalle, and A. Nirmalathas, “Protection switching and local area network emulation in passive optical networks,” J. Lightwave Technol. 24(5), 1955–1967 (2006).
    [CrossRef]
  13. X. Cheng, Y. J. Wen, Z. Xu, Y. Wang, and Y.-K. Yeo, “Survivable WDM-PON with self-protection and in-service fault localization capabilities,” Opt. Commun. 281(18), 4606–4611 (2008).
    [CrossRef]
  14. H. Song, D.-M. Seol, and B.-Y. Kim, “Hardware-accelerated protection in long-reach PON”, in Proceedings of the IEEE/OSA Opt. Fiber Commun. Conf, San Diego, CA, USA, OThP7 (2009).
  15. ITU-T G.664, Optical Safety Procedures and Requirements for Optical Transport Systems, 2003, ITU.
  16. E. Wong and M. A. Summerfield, “Sensitivity evaluation of baseband carrier-sense circuit for optical CSMA/CA packet networks,” J. Lightwave Technol. 22(8), 1834–1843 (2004).
    [CrossRef]
  17. K. Hinton, P. Farrell, A. Zalesky, L. Andrew, and M. Zukerman, “Automatic laser shutdown implications for all optical data networks,” J. Lightwave Technol. 24(2), 674–680 (2006).
    [CrossRef]
  18. E. Wong and M. A. Summerfield, “Performance analysis of baseband carrier-sense circuit in optical CSMA networks,” IEEE Photon. Technol. Lett. 14(5), 708–710 (2002).
    [CrossRef]

2011 (2)

L. Mehedy, M. Bakaul, A. Nirmalathas, and E. Skafidas, “Scalable and spectrally efficient long-reach optical access networks employing frequency interleaved directly detected optical OFDM,” J. Opt. Commun. Netw. 3(11), 881–890 (2011).
[CrossRef]

L. G. Kazovsky, S.-W. Wong, V. Gudla, P. T. Afshar, S.-H. Yen, S. Yamashita, and Y. Yan, “Challenges in next-generation optical access networks: addressing reach extension and security weaknesses,” IET Optoelectron. 5(4), 133–143 (2011).
[CrossRef]

2010 (1)

F. J. Effenberger, J.-i. Kani, and Y. Maeda, “Standardization trends and prospective views on the next generation of broadband optical access systems,” IEEE J. Sel. Areas Commun. 28(6), 773–780 (2010).
[CrossRef]

2009 (1)

2008 (1)

X. Cheng, Y. J. Wen, Z. Xu, Y. Wang, and Y.-K. Yeo, “Survivable WDM-PON with self-protection and in-service fault localization capabilities,” Opt. Commun. 281(18), 4606–4611 (2008).
[CrossRef]

2007 (1)

2006 (2)

2005 (2)

Y. Hsueh, W. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “SUCCESS PON demonstrator: experimental exploration of next-generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

F. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky, “SUCCESS-HPON: a nextgeneration optical access architecture for smooth migration from TDM-PON to WDM-PON,” IEEE Commun. Mag. 43(11), S40–S47 (2005).
[CrossRef]

2004 (1)

2003 (1)

T.-K. Chan, C.-K. Chan, L.-K. Chen, and F. Tong, “A self-protected architecture for wavelength-division-multiplexed passive optical networks,” IEEE Photon. Technol. Lett. 15(11), 1660–1662 (2003).
[CrossRef]

2002 (1)

E. Wong and M. A. Summerfield, “Performance analysis of baseband carrier-sense circuit in optical CSMA networks,” IEEE Photon. Technol. Lett. 14(5), 708–710 (2002).
[CrossRef]

Afshar, P. T.

L. G. Kazovsky, S.-W. Wong, V. Gudla, P. T. Afshar, S.-H. Yen, S. Yamashita, and Y. Yan, “Challenges in next-generation optical access networks: addressing reach extension and security weaknesses,” IET Optoelectron. 5(4), 133–143 (2011).
[CrossRef]

Agata, A.

Y. Hsueh, W. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “SUCCESS PON demonstrator: experimental exploration of next-generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

An, F.

F. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky, “SUCCESS-HPON: a nextgeneration optical access architecture for smooth migration from TDM-PON to WDM-PON,” IEEE Commun. Mag. 43(11), S40–S47 (2005).
[CrossRef]

Andrew, L.

Attygalle, M.

Bakaul, M.

Chan, C.-K.

T.-K. Chan, C.-K. Chan, L.-K. Chen, and F. Tong, “A self-protected architecture for wavelength-division-multiplexed passive optical networks,” IEEE Photon. Technol. Lett. 15(11), 1660–1662 (2003).
[CrossRef]

Chan, T.-K.

T.-K. Chan, C.-K. Chan, L.-K. Chen, and F. Tong, “A self-protected architecture for wavelength-division-multiplexed passive optical networks,” IEEE Photon. Technol. Lett. 15(11), 1660–1662 (2003).
[CrossRef]

Chen, L.-K.

T.-K. Chan, C.-K. Chan, L.-K. Chen, and F. Tong, “A self-protected architecture for wavelength-division-multiplexed passive optical networks,” IEEE Photon. Technol. Lett. 15(11), 1660–1662 (2003).
[CrossRef]

Cheng, X.

X. Cheng, Y. J. Wen, Z. Xu, Y. Wang, and Y.-K. Yeo, “Survivable WDM-PON with self-protection and in-service fault localization capabilities,” Opt. Commun. 281(18), 4606–4611 (2008).
[CrossRef]

Effenberger, F. J.

F. J. Effenberger, J.-i. Kani, and Y. Maeda, “Standardization trends and prospective views on the next generation of broadband optical access systems,” IEEE J. Sel. Areas Commun. 28(6), 773–780 (2010).
[CrossRef]

Farrell, P.

Gudla, V.

L. G. Kazovsky, S.-W. Wong, V. Gudla, P. T. Afshar, S.-H. Yen, S. Yamashita, and Y. Yan, “Challenges in next-generation optical access networks: addressing reach extension and security weaknesses,” IET Optoelectron. 5(4), 133–143 (2011).
[CrossRef]

Gutierrez, D.

F. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky, “SUCCESS-HPON: a nextgeneration optical access architecture for smooth migration from TDM-PON to WDM-PON,” IEEE Commun. Mag. 43(11), S40–S47 (2005).
[CrossRef]

Hinton, K.

Hsueh, Y.

Y. Hsueh, W. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “SUCCESS PON demonstrator: experimental exploration of next-generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

Iwatsuki, K.

Kani, J.-i.

F. J. Effenberger, J.-i. Kani, and Y. Maeda, “Standardization trends and prospective views on the next generation of broadband optical access systems,” IEEE J. Sel. Areas Commun. 28(6), 773–780 (2010).
[CrossRef]

K. Iwatsuki and J.-i. Kani, “Applications and technical Issues of wavelength-division multiplexing passive optical networks with colorless optical network units [Invited],” J. Opt. Commun. Netw. 1(4), C17–C24 (2009).
[CrossRef]

Kazovsky, L. G.

L. G. Kazovsky, S.-W. Wong, V. Gudla, P. T. Afshar, S.-H. Yen, S. Yamashita, and Y. Yan, “Challenges in next-generation optical access networks: addressing reach extension and security weaknesses,” IET Optoelectron. 5(4), 133–143 (2011).
[CrossRef]

F. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky, “SUCCESS-HPON: a nextgeneration optical access architecture for smooth migration from TDM-PON to WDM-PON,” IEEE Commun. Mag. 43(11), S40–S47 (2005).
[CrossRef]

Y. Hsueh, W. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “SUCCESS PON demonstrator: experimental exploration of next-generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

Kim, K. S.

F. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky, “SUCCESS-HPON: a nextgeneration optical access architecture for smooth migration from TDM-PON to WDM-PON,” IEEE Commun. Mag. 43(11), S40–S47 (2005).
[CrossRef]

Kim, M.-H.

Lee, C.-H.

Lee, J. W.

F. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky, “SUCCESS-HPON: a nextgeneration optical access architecture for smooth migration from TDM-PON to WDM-PON,” IEEE Commun. Mag. 43(11), S40–S47 (2005).
[CrossRef]

Lee, S.-M.

Maeda, Y.

F. J. Effenberger, J.-i. Kani, and Y. Maeda, “Standardization trends and prospective views on the next generation of broadband optical access systems,” IEEE J. Sel. Areas Commun. 28(6), 773–780 (2010).
[CrossRef]

Mehedy, L.

Mun, S.-G.

Nadarajah, N.

Nirmalathas, A.

Shaw, W.

Y. Hsueh, W. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “SUCCESS PON demonstrator: experimental exploration of next-generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

Skafidas, E.

Summerfield, M. A.

E. Wong and M. A. Summerfield, “Sensitivity evaluation of baseband carrier-sense circuit for optical CSMA/CA packet networks,” J. Lightwave Technol. 22(8), 1834–1843 (2004).
[CrossRef]

E. Wong and M. A. Summerfield, “Performance analysis of baseband carrier-sense circuit in optical CSMA networks,” IEEE Photon. Technol. Lett. 14(5), 708–710 (2002).
[CrossRef]

Tong, F.

T.-K. Chan, C.-K. Chan, L.-K. Chen, and F. Tong, “A self-protected architecture for wavelength-division-multiplexed passive optical networks,” IEEE Photon. Technol. Lett. 15(11), 1660–1662 (2003).
[CrossRef]

Wang, Y.

X. Cheng, Y. J. Wen, Z. Xu, Y. Wang, and Y.-K. Yeo, “Survivable WDM-PON with self-protection and in-service fault localization capabilities,” Opt. Commun. 281(18), 4606–4611 (2008).
[CrossRef]

Wen, Y. J.

X. Cheng, Y. J. Wen, Z. Xu, Y. Wang, and Y.-K. Yeo, “Survivable WDM-PON with self-protection and in-service fault localization capabilities,” Opt. Commun. 281(18), 4606–4611 (2008).
[CrossRef]

Wong, E.

Wong, S.-W.

L. G. Kazovsky, S.-W. Wong, V. Gudla, P. T. Afshar, S.-H. Yen, S. Yamashita, and Y. Yan, “Challenges in next-generation optical access networks: addressing reach extension and security weaknesses,” IET Optoelectron. 5(4), 133–143 (2011).
[CrossRef]

Xu, Z.

X. Cheng, Y. J. Wen, Z. Xu, Y. Wang, and Y.-K. Yeo, “Survivable WDM-PON with self-protection and in-service fault localization capabilities,” Opt. Commun. 281(18), 4606–4611 (2008).
[CrossRef]

Yamamoto, S.

Y. Hsueh, W. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “SUCCESS PON demonstrator: experimental exploration of next-generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

Yamashita, S.

L. G. Kazovsky, S.-W. Wong, V. Gudla, P. T. Afshar, S.-H. Yen, S. Yamashita, and Y. Yan, “Challenges in next-generation optical access networks: addressing reach extension and security weaknesses,” IET Optoelectron. 5(4), 133–143 (2011).
[CrossRef]

Yan, Y.

L. G. Kazovsky, S.-W. Wong, V. Gudla, P. T. Afshar, S.-H. Yen, S. Yamashita, and Y. Yan, “Challenges in next-generation optical access networks: addressing reach extension and security weaknesses,” IET Optoelectron. 5(4), 133–143 (2011).
[CrossRef]

Yen, S.-H.

L. G. Kazovsky, S.-W. Wong, V. Gudla, P. T. Afshar, S.-H. Yen, S. Yamashita, and Y. Yan, “Challenges in next-generation optical access networks: addressing reach extension and security weaknesses,” IET Optoelectron. 5(4), 133–143 (2011).
[CrossRef]

Yeo, Y.-K.

X. Cheng, Y. J. Wen, Z. Xu, Y. Wang, and Y.-K. Yeo, “Survivable WDM-PON with self-protection and in-service fault localization capabilities,” Opt. Commun. 281(18), 4606–4611 (2008).
[CrossRef]

Zalesky, A.

Zukerman, M.

IEEE Commun. Mag. (2)

Y. Hsueh, W. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “SUCCESS PON demonstrator: experimental exploration of next-generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

F. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky, “SUCCESS-HPON: a nextgeneration optical access architecture for smooth migration from TDM-PON to WDM-PON,” IEEE Commun. Mag. 43(11), S40–S47 (2005).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

F. J. Effenberger, J.-i. Kani, and Y. Maeda, “Standardization trends and prospective views on the next generation of broadband optical access systems,” IEEE J. Sel. Areas Commun. 28(6), 773–780 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T.-K. Chan, C.-K. Chan, L.-K. Chen, and F. Tong, “A self-protected architecture for wavelength-division-multiplexed passive optical networks,” IEEE Photon. Technol. Lett. 15(11), 1660–1662 (2003).
[CrossRef]

E. Wong and M. A. Summerfield, “Performance analysis of baseband carrier-sense circuit in optical CSMA networks,” IEEE Photon. Technol. Lett. 14(5), 708–710 (2002).
[CrossRef]

IET Optoelectron. (1)

L. G. Kazovsky, S.-W. Wong, V. Gudla, P. T. Afshar, S.-H. Yen, S. Yamashita, and Y. Yan, “Challenges in next-generation optical access networks: addressing reach extension and security weaknesses,” IET Optoelectron. 5(4), 133–143 (2011).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (2)

Opt. Commun. (1)

X. Cheng, Y. J. Wen, Z. Xu, Y. Wang, and Y.-K. Yeo, “Survivable WDM-PON with self-protection and in-service fault localization capabilities,” Opt. Commun. 281(18), 4606–4611 (2008).
[CrossRef]

Other (5)

H. Song, D.-M. Seol, and B.-Y. Kim, “Hardware-accelerated protection in long-reach PON”, in Proceedings of the IEEE/OSA Opt. Fiber Commun. Conf, San Diego, CA, USA, OThP7 (2009).

ITU-T G.664, Optical Safety Procedures and Requirements for Optical Transport Systems, 2003, ITU.

E. Wong, “Passive optical networks: current and next-generation technologies,” (Invited Paper), in Proc. IEEE/OSA Opt. Fiber Communication Conference Los Angeles, California, USA, NMD1 (2011).

E. Wong and K. L. Lee, “Automatic protection, restoration and survivability of long-reach passive optical networks,” in Proc. IEEE Int. Conference on Communication (ICC), Kyoto, Japan, paper SAC ASN-P (2011).

K. L. Lee, J. L. Riding, A. V. Tran, and R. S. Tucker, “Extended-reach GPON for rural areas using distributed raman amplfiers,” in Proc. IEEE/OSA Opt. Fiber Communication Conference, San Diego, CA, NME3 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Distributed Raman amplified ER-PONs supporting either (a) single (e.g. Ethernet PON and Gigabit PON) or (b) multiple wavelength (WDM-PON) channels. (c) Block diagram of monitoring module with probability distribution function, RTPDF, of the control signal.

Fig. 2
Fig. 2

Experimental setup for network performance measurements. Inset: Optical spectra and Raman gain profile of up- and downstream signals.

Fig. 3
Fig. 3

Bit-error-ratio (BER) measurements of upstream and downstream signals.

Fig. 4
Fig. 4

Experimental setup to evaluate response time of (a) monitoring module and optical switch, and (b) automatic pump laser shutdown (APLS) mechanism.

Fig. 5
Fig. 5

Oscilloscope traces measuring response time of (a) monitoring module and (b) optical switch.

Fig. 6
Fig. 6

Oscilloscope traces measuring the response time of the automatic pump laser shutdown (APLS) mechanism.

Fig. 7
Fig. 7

Response time PDF, RTPDF, for differing values of received optical power (Popt) at the monitoring module.

Tables (1)

Tables Icon

Table 1 Response Time Mean and Jitter for Differing Received Optical Power Values

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R T PDF ( t )= | v(0) V th σ N 2 | 2 exp( 2t τ ) π τ ( exp( 2t τ )1 ) 3 2 exp( ( v(t) V th σ N 2 exp( t τ ) ) 2 2( exp( 2t τ )1 ) )
v( t )=[ AA( 1+Xexp( t τ )+Yexp( ζ ω n t ) sin ω d t ω d ) ] [ G 2 R( i( t )×η V T R I SAT ) ]
A=2× 10 P opt 10 1000 × R P × R F × G 1 × G 2
X= 2 τ 2 + τ 2 ω n 2 3τ1 τ( ω n 2 τ+3+2τ+2ζ ω n )
Y= ( τ+2τζ ω n + ω n 2 τ+1+2ζ ω n +Yτ+2Xτζ ω n +Xτ ω n 2 ) 1+τ

Metrics