Abstract

We study the propagation properties of surface plasmon polaritons on a Cu surface by means of photoemission electron microscopy. Use of a CMOS process to fabricate the Cu thin film is shown to enable very high propagation distances (up to 65 μm at 750 nm wavelength), provided that the copper native oxide is removed. A critical review of the optical loss mechanisms is undertaken and shed light on the effect of single grain boundaries in increasing the propagation losses of the plasmon. A microscopic interpretation is provided, relying on groove induced electromagnetic hot spots.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
    [CrossRef]
  2. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metaloxidesilicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
    [CrossRef] [PubMed]
  3. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
    [CrossRef] [PubMed]
  4. J. L. Perchec, R. E. de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, “High rejection bandpass optical filters based on sub-wavelength metal patch arrays,” Opt. Express 19, 15720–15731 (2011).
    [CrossRef] [PubMed]
  5. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy.” Appl. Phys. Lett. 93, 113110 (2008).
    [CrossRef]
  6. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
    [CrossRef] [PubMed]
  7. K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
    [CrossRef] [PubMed]
  8. D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12, 4036–4046 (1975).
    [CrossRef]
  9. D. Canchal-Arias and P. Dawson, “Measurement and interpretation of the mid-infrared properties of single crystal and polycrystalline gold,” Surface Science 577, 95 – 111 (2005).
    [CrossRef]
  10. V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
    [CrossRef]
  11. E. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).
  12. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  13. V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.
  14. N. Ashcroft and N. Mermin, Solid State Physics (Orlando, 1976).
  15. L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, and P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett. 8, 935–940 (2008).
    [CrossRef] [PubMed]
  16. L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. of Phys. D 44, 464002 (2011).
    [CrossRef]
  17. R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
    [CrossRef] [PubMed]
  18. H. Liu, H. Liu, P. Lalanne, X. Yang, and J.-P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14, 1522–1529 (2008).
    [CrossRef]
  19. S. Boutami and J. Hazart, “Calculation of a point source radiation in a flat or non-flat stratified background: an alternative to sommerfeld integrals,” Euro. Phys. J.: Appl. Phys. 52, 23305 (2010).
    [CrossRef]
  20. J. A. Sánchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: Shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
    [CrossRef]
  21. P. Dawson and M. G. Boyle, “Light emission from scanning tunnelling microscope on polycrystalline au films -what is happening at the single-grain level?” J. Opt. A, Pure Appl. Opt. 8, S219 (2006).
    [CrossRef]
  22. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
    [CrossRef] [PubMed]
  23. S. J. Orfanidis, Electromagnetic waves and antennas (Piscataway, NJ, 2004).
  24. P. Keil, R. Frahm, and D. Ltzenkirchen-Hecht, “Native oxidation of sputter deposited polycrystalline copper thin films during short and long exposure times: Comparative investigation by specular and non-specular grazing incidence x-ray absorption spectroscopy,” Corrosion Science 52, 1305–1316 (2010).
    [CrossRef]
  25. http://refractiveindex.info .

2011 (2)

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. of Phys. D 44, 464002 (2011).
[CrossRef]

J. L. Perchec, R. E. de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, “High rejection bandpass optical filters based on sub-wavelength metal patch arrays,” Opt. Express 19, 15720–15731 (2011).
[CrossRef] [PubMed]

2010 (5)

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metaloxidesilicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
[CrossRef] [PubMed]

S. Boutami and J. Hazart, “Calculation of a point source radiation in a flat or non-flat stratified background: an alternative to sommerfeld integrals,” Euro. Phys. J.: Appl. Phys. 52, 23305 (2010).
[CrossRef]

P. Keil, R. Frahm, and D. Ltzenkirchen-Hecht, “Native oxidation of sputter deposited polycrystalline copper thin films during short and long exposure times: Comparative investigation by specular and non-specular grazing incidence x-ray absorption spectroscopy,” Corrosion Science 52, 1305–1316 (2010).
[CrossRef]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[CrossRef] [PubMed]

2009 (3)

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

2008 (4)

L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, and P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett. 8, 935–940 (2008).
[CrossRef] [PubMed]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy.” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

H. Liu, H. Liu, P. Lalanne, X. Yang, and J.-P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14, 1522–1529 (2008).
[CrossRef]

2006 (1)

P. Dawson and M. G. Boyle, “Light emission from scanning tunnelling microscope on polycrystalline au films -what is happening at the single-grain level?” J. Opt. A, Pure Appl. Opt. 8, S219 (2006).
[CrossRef]

2005 (1)

D. Canchal-Arias and P. Dawson, “Measurement and interpretation of the mid-infrared properties of single crystal and polycrystalline gold,” Surface Science 577, 95 – 111 (2005).
[CrossRef]

2003 (1)

J. A. Sánchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: Shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
[CrossRef]

1999 (1)

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

1975 (1)

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12, 4036–4046 (1975).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Adam, P.-M.

L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, and P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett. 8, 935–940 (2008).
[CrossRef] [PubMed]

Ashcroft, N.

N. Ashcroft and N. Mermin, Solid State Physics (Orlando, 1976).

Assous, M.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy.” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

Bachelot, R.

L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, and P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett. 8, 935–940 (2008).
[CrossRef] [PubMed]

Badano, G.

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Blaize, S.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metaloxidesilicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Borneman, J. D.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[CrossRef] [PubMed]

Bouchu, D.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Boutami, S.

S. Boutami and J. Hazart, “Calculation of a point source radiation in a flat or non-flat stratified background: an alternative to sommerfeld integrals,” Euro. Phys. J.: Appl. Phys. 52, 23305 (2010).
[CrossRef]

Boyle, M. G.

P. Dawson and M. G. Boyle, “Light emission from scanning tunnelling microscope on polycrystalline au films -what is happening at the single-grain level?” J. Opt. A, Pure Appl. Opt. 8, S219 (2006).
[CrossRef]

Brun, M.

Bruyant, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metaloxidesilicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Canchal-Arias, D.

D. Canchal-Arias and P. Dawson, “Measurement and interpretation of the mid-infrared properties of single crystal and polycrystalline gold,” Surface Science 577, 95 – 111 (2005).
[CrossRef]

Charra, F.

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. of Phys. D 44, 464002 (2011).
[CrossRef]

L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, and P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett. 8, 935–940 (2008).
[CrossRef] [PubMed]

Chaturvedi, P.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Chelnokov, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metaloxidesilicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Chen, K.-P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Ciaramella, F.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

David, T.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Dawson, P.

P. Dawson and M. G. Boyle, “Light emission from scanning tunnelling microscope on polycrystalline au films -what is happening at the single-grain level?” J. Opt. A, Pure Appl. Opt. 8, S219 (2006).
[CrossRef]

D. Canchal-Arias and P. Dawson, “Measurement and interpretation of the mid-infrared properties of single crystal and polycrystalline gold,” Surface Science 577, 95 – 111 (2005).
[CrossRef]

de Lamaestre, R. E.

Delacour, C.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metaloxidesilicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Dereux, A.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Dmitriev, A.

R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
[CrossRef] [PubMed]

Douillard, L.

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. of Phys. D 44, 464002 (2011).
[CrossRef]

L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, and P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett. 8, 935–940 (2008).
[CrossRef] [PubMed]

Drachev, V. P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[CrossRef] [PubMed]

Fang, N. X.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Fayolle, M.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Fedeli, J. M.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metaloxidesilicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Frahm, R.

P. Keil, R. Frahm, and D. Ltzenkirchen-Hecht, “Native oxidation of sputter deposited polycrystalline copper thin films during short and long exposure times: Comparative investigation by specular and non-specular grazing incidence x-ray absorption spectroscopy,” Corrosion Science 52, 1305–1316 (2010).
[CrossRef]

Gallagher, M.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Girard, C.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Goudonnet, J.-P.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Gravrand, O.

Grosse, P.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metaloxidesilicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Guedj, C.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Hazart, J.

J. L. Perchec, R. E. de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, “High rejection bandpass optical filters based on sub-wavelength metal patch arrays,” Opt. Express 19, 15720–15731 (2011).
[CrossRef] [PubMed]

S. Boutami and J. Hazart, “Calculation of a point source radiation in a flat or non-flat stratified background: an alternative to sommerfeld integrals,” Euro. Phys. J.: Appl. Phys. 52, 23305 (2010).
[CrossRef]

Hugonin, J.-P.

H. Liu, H. Liu, P. Lalanne, X. Yang, and J.-P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14, 1522–1529 (2008).
[CrossRef]

Islam, M. S.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Jackman, M.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jousseaume, V.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Keil, P.

P. Keil, R. Frahm, and D. Ltzenkirchen-Hecht, “Native oxidation of sputter deposited polycrystalline copper thin films during short and long exposure times: Comparative investigation by specular and non-specular grazing incidence x-ray absorption spectroscopy,” Corrosion Science 52, 1305–1316 (2010).
[CrossRef]

Kildishev, A. V.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[CrossRef] [PubMed]

Kobayashi, N. P.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Korczak, Z.

L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, and P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett. 8, 935–940 (2008).
[CrossRef] [PubMed]

Kostcheev, S.

L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, and P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett. 8, 935–940 (2008).
[CrossRef] [PubMed]

Krenn, J. R.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Kuttge, M.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy.” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

Lalanne, P.

H. Liu, H. Liu, P. Lalanne, X. Yang, and J.-P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14, 1522–1529 (2008).
[CrossRef]

Le Cornec, C.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Leduc, P.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Lerondel, G.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metaloxidesilicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, and P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett. 8, 935–940 (2008).
[CrossRef] [PubMed]

Lezec, H. J.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy.” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

Lindquist, N. C.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Liu, H.

H. Liu, H. Liu, P. Lalanne, X. Yang, and J.-P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14, 1522–1529 (2008).
[CrossRef]

H. Liu, H. Liu, P. Lalanne, X. Yang, and J.-P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14, 1522–1529 (2008).
[CrossRef]

Logeeswaran, V. J.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

López-Rios, T.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Louis, D.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Ltzenkirchen-Hecht, D.

P. Keil, R. Frahm, and D. Ltzenkirchen-Hecht, “Native oxidation of sputter deposited polycrystalline copper thin films during short and long exposure times: Comparative investigation by specular and non-specular grazing incidence x-ray absorption spectroscopy,” Corrosion Science 52, 1305–1316 (2010).
[CrossRef]

Maitrejean, S.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Mermin, N.

N. Ashcroft and N. Mermin, Solid State Physics (Orlando, 1976).

Mills, D. L.

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12, 4036–4046 (1975).
[CrossRef]

Morel, T.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Nagpal, P.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Nicoletti, S.

Norris, D. J.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Oh, S.-H.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Orfanidis, S. J.

S. J. Orfanidis, Electromagnetic waves and antennas (Piscataway, NJ, 2004).

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).

Passemard, G.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Perchec, J. L.

Polman, A.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy.” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

Prokopowicz, G.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Rebiscoul, D.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Remiat, B.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Rochat, N.

Roman, A.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Roule, A.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Royer, P.

L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, and P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett. 8, 935–940 (2008).
[CrossRef] [PubMed]

Salas-Montiel, R.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metaloxidesilicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Sánchez-Gil, J. A.

J. A. Sánchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: Shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
[CrossRef]

Scevola, D.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Shalaev, V. M.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Trouve, H.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Verhoeven, J.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy.” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

Vesseur, E. J. R.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy.” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

Vogelgesang, R.

R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
[CrossRef] [PubMed]

Wang, S. Y.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Weeber, J.-C.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Williams, R. S.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Wu, W.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Yang, X.

H. Liu, H. Liu, P. Lalanne, X. Yang, and J.-P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14, 1522–1529 (2008).
[CrossRef]

Zenasni, A.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

Analyst (1)

R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy.” Appl. Phys. Lett. 93, 113110 (2008).
[CrossRef]

Corrosion Science (1)

P. Keil, R. Frahm, and D. Ltzenkirchen-Hecht, “Native oxidation of sputter deposited polycrystalline copper thin films during short and long exposure times: Comparative investigation by specular and non-specular grazing incidence x-ray absorption spectroscopy,” Corrosion Science 52, 1305–1316 (2010).
[CrossRef]

Euro. Phys. J.: Appl. Phys. (1)

S. Boutami and J. Hazart, “Calculation of a point source radiation in a flat or non-flat stratified background: an alternative to sommerfeld integrals,” Euro. Phys. J.: Appl. Phys. 52, 23305 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Liu, H. Liu, P. Lalanne, X. Yang, and J.-P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14, 1522–1529 (2008).
[CrossRef]

J. of Phys. D (1)

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. of Phys. D 44, 464002 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

P. Dawson and M. G. Boyle, “Light emission from scanning tunnelling microscope on polycrystalline au films -what is happening at the single-grain level?” J. Opt. A, Pure Appl. Opt. 8, S219 (2006).
[CrossRef]

Nano Lett. (5)

L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, and P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett. 8, 935–940 (2008).
[CrossRef] [PubMed]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[CrossRef] [PubMed]

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metaloxidesilicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (4)

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12, 4036–4046 (1975).
[CrossRef]

J. A. Sánchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: Shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Science (1)

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Surface Science (1)

D. Canchal-Arias and P. Dawson, “Measurement and interpretation of the mid-infrared properties of single crystal and polycrystalline gold,” Surface Science 577, 95 – 111 (2005).
[CrossRef]

Other (5)

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ulk (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional beol processing and a late porogen removal,” in “Interconnect Technology Conference, 2005. Proceedings of the IEEE 2005 International,” (2005), pp. 60–62.

N. Ashcroft and N. Mermin, Solid State Physics (Orlando, 1976).

E. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).

S. J. Orfanidis, Electromagnetic waves and antennas (Piscataway, NJ, 2004).

http://refractiveindex.info .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) AFM top-view image of the Cu surface with 10 μm x 10 μm scan range, measured grain size is 2 ± 0.8 μm, RMS roughness is 0.65 ± 0.15 nm. A and B indicate deep and shallow grooves respectively; (b) Dielectric functions for the fabricated Cu measured by ellipsometry, together with dielectric functions of copper from Palik [11]. Silver optical constants from Johnson and Christy [12] are also plotted.

Fig. 2
Fig. 2

Experimental configuration. Blue curves are the result of the interference of the SPP mode (blue) launched from dielectric ridge and p-polarized incident light (green).

Fig. 3
Fig. 3

For all images, the orange arrow indicates the incident light direction. (a) PEEM image at 700 nm wavelength. Launcher position is at the top of the figure. The scale bar is 4 μm. (b) higher resolution zoom of PEEM image shown in (a). A and B indicate relatively large and small hot spots respectively, in correlation with the surface defects of type A and B observed in AFM image (Fig. 1(a)). (c) LEEM and PEEM images at the same sample location. Blue triangles highlight the positions of hot spots.The scale bar length for (b) and (c) is 2 μm.

Fig. 4
Fig. 4

(a) fit of the PEEM data using the complex optical index calculated by an FDTD mode analysis. Fit is achieved by considering the interference of the incident plane wave and a SPP mode whose propagation constant is calculated by FDTD, for distances from the Si3N4 ridge above 10μm. (b) Comparison between the SPP propagation length expected from the ellipsometric data with that obtained by taking into account the native oxide layer, and calculated by FDTD.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P loss = V 1 2 ω ε | E | 2 d V δ S 1 2 ω ε | E | 2 d S

Metrics