Abstract

We proposed a silicon-based optical switch with a carrier-plasma-induced phase shifter which employs a silicon-germanium (SiGe) / silicon (Si) hetero-structure in the waveguide core. A type-I hetero-interface formed by SiGe and Si is expected to confine carriers effectively in the SiGe waveguide core. The fabricated Mach-Zehnder optical switch shows a low switching power of only 1.53 mW with a compact phase shifter length of 250 μm. The switching time of the optical switch is less than 4.6 ns for the case of a square waveform driving condition, and 1 ns for the case of a pre-emphasis electric driving condition. These results show that our proposed SiGe/Si waveguide structure holds promise for active devices with compact size and low operation power.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Namiki, T. Hasama, M. Mori, M. Watanabe, and H. Ishikawa, “Dynamic optical path switching for ultra-low energy consumption and its enabling device technologies,” in International Symposium on Applications and the Internet (SAINT 2008), 393–396 (2008).
  2. S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1 V peak-to-peak driven 10-Gbps slow-light silicon Mach–Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express 3, 072202 (2010).
    [CrossRef]
  3. J. Liu and J. Michel, “High performance Ge devices for electronic-photonic integrated circuits,” ECS Trans. 16, 575–582 (2008).
    [CrossRef]
  4. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
    [CrossRef]
  5. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13, 10109–10114 (2005).
    [CrossRef] [PubMed]
  6. R. Kasahara, K. Watanabe, M. Itoh, Y. Inoue, and A. Kaneko, “Extremely low power consumption thermooptic switch (0.6 mW) with suspended ridge and silicon-silica hybrid waveguide structures,” in 34th European Conference on Optical Communication 2008, (ECOC 2008), Vol. 5, pp. 55–56 (2008).
  7. J. V. Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029 (2009).
    [CrossRef]
  8. P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18, 25225–25231 (2010).
    [CrossRef] [PubMed]
  9. L. Yang, J. R. Watling, R. C. W. Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, “Si/SiGe heterostructure parameters for device simulations,” Semicond. Sci. Technol. 19, 1174–1182 (2004).
    [CrossRef]
  10. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
    [CrossRef]
  11. D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
    [CrossRef]
  12. G.-R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Käertner, “Effect of carrier lifetime on forward-biasedsilicon Mach-Zehnder modulators,” Opt. Express 16, 5218–5226 (2008).
    [CrossRef] [PubMed]
  13. Y. Ueda, S. Nakamura, S. Fujimoto, H. Yamada, K. Utaka, T. Shiota, and T. Kitatani, “Polarization-independent low-crosstalk operation of InAlGaAs-InAlAs Mach-Zehnder interferometer-type photonic switch with hybrid waveguide structure,” IEEE Photon. Technol. Lett. 21, 1118–1120 (2009).
    [CrossRef]
  14. F. Gan, S. Spector, M. Geis, M. Grein, R. Schulein, J. Yoon, T. Lyszczarz, and F. Kartner, “Compact, low-power, high-speed silicon electro-optic modulator,” in Conference on Lasers and Electro-Optics, 2007 (CLEO 2007), paper CTuQ6 (2007).

2010 (4)

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1 V peak-to-peak driven 10-Gbps slow-light silicon Mach–Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express 3, 072202 (2010).
[CrossRef]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[CrossRef]

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18, 25225–25231 (2010).
[CrossRef] [PubMed]

2009 (2)

J. V. Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029 (2009).
[CrossRef]

Y. Ueda, S. Nakamura, S. Fujimoto, H. Yamada, K. Utaka, T. Shiota, and T. Kitatani, “Polarization-independent low-crosstalk operation of InAlGaAs-InAlAs Mach-Zehnder interferometer-type photonic switch with hybrid waveguide structure,” IEEE Photon. Technol. Lett. 21, 1118–1120 (2009).
[CrossRef]

2008 (3)

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[CrossRef]

J. Liu and J. Michel, “High performance Ge devices for electronic-photonic integrated circuits,” ECS Trans. 16, 575–582 (2008).
[CrossRef]

G.-R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Käertner, “Effect of carrier lifetime on forward-biasedsilicon Mach-Zehnder modulators,” Opt. Express 16, 5218–5226 (2008).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

L. Yang, J. R. Watling, R. C. W. Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, “Si/SiGe heterostructure parameters for device simulations,” Semicond. Sci. Technol. 19, 1174–1182 (2004).
[CrossRef]

Akiyama, S.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1 V peak-to-peak driven 10-Gbps slow-light silicon Mach–Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express 3, 072202 (2010).
[CrossRef]

Arakawa, Y.

Asenov, A.

L. Yang, J. R. Watling, R. C. W. Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, “Si/SiGe heterostructure parameters for device simulations,” Semicond. Sci. Technol. 19, 1174–1182 (2004).
[CrossRef]

Asghari, M.

Assefa, S.

Baba, T.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1 V peak-to-peak driven 10-Gbps slow-light silicon Mach–Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express 3, 072202 (2010).
[CrossRef]

Baets, R.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

Barker, J. R.

L. Yang, J. R. Watling, R. C. W. Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, “Si/SiGe heterostructure parameters for device simulations,” Semicond. Sci. Technol. 19, 1174–1182 (2004).
[CrossRef]

Bogaerts, W.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

Boriçi, M.

L. Yang, J. R. Watling, R. C. W. Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, “Si/SiGe heterostructure parameters for device simulations,” Semicond. Sci. Technol. 19, 1174–1182 (2004).
[CrossRef]

Bowers, J. E.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[CrossRef]

Campenhout, J. V.

Chu, T.

Dong, P.

Dumon, P.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

Feng, D.

Fujimoto, S.

Y. Ueda, S. Nakamura, S. Fujimoto, H. Yamada, K. Utaka, T. Shiota, and T. Kitatani, “Polarization-independent low-crosstalk operation of InAlGaAs-InAlAs Mach-Zehnder interferometer-type photonic switch with hybrid waveguide structure,” IEEE Photon. Technol. Lett. 21, 1118–1120 (2009).
[CrossRef]

Gan, F.

G.-R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Käertner, “Effect of carrier lifetime on forward-biasedsilicon Mach-Zehnder modulators,” Opt. Express 16, 5218–5226 (2008).
[CrossRef] [PubMed]

F. Gan, S. Spector, M. Geis, M. Grein, R. Schulein, J. Yoon, T. Lyszczarz, and F. Kartner, “Compact, low-power, high-speed silicon electro-optic modulator,” in Conference on Lasers and Electro-Optics, 2007 (CLEO 2007), paper CTuQ6 (2007).

Geis, M.

F. Gan, S. Spector, M. Geis, M. Grein, R. Schulein, J. Yoon, T. Lyszczarz, and F. Kartner, “Compact, low-power, high-speed silicon electro-optic modulator,” in Conference on Lasers and Electro-Optics, 2007 (CLEO 2007), paper CTuQ6 (2007).

Geis, M. W.

Green, W. M.

Grein, M.

F. Gan, S. Spector, M. Geis, M. Grein, R. Schulein, J. Yoon, T. Lyszczarz, and F. Kartner, “Compact, low-power, high-speed silicon electro-optic modulator,” in Conference on Lasers and Electro-Optics, 2007 (CLEO 2007), paper CTuQ6 (2007).

Grein, M. E.

Hasama, T.

S. Namiki, T. Hasama, M. Mori, M. Watanabe, and H. Ishikawa, “Dynamic optical path switching for ultra-low energy consumption and its enabling device technologies,” in International Symposium on Applications and the Internet (SAINT 2008), 393–396 (2008).

Hatori, N.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1 V peak-to-peak driven 10-Gbps slow-light silicon Mach–Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express 3, 072202 (2010).
[CrossRef]

Inoue, Y.

R. Kasahara, K. Watanabe, M. Itoh, Y. Inoue, and A. Kaneko, “Extremely low power consumption thermooptic switch (0.6 mW) with suspended ridge and silicon-silica hybrid waveguide structures,” in 34th European Conference on Optical Communication 2008, (ECOC 2008), Vol. 5, pp. 55–56 (2008).

Ippen, E. P.

Ishida, S.

Ishikawa, H.

S. Namiki, T. Hasama, M. Mori, M. Watanabe, and H. Ishikawa, “Dynamic optical path switching for ultra-low energy consumption and its enabling device technologies,” in International Symposium on Applications and the Internet (SAINT 2008), 393–396 (2008).

Itoh, M.

R. Kasahara, K. Watanabe, M. Itoh, Y. Inoue, and A. Kaneko, “Extremely low power consumption thermooptic switch (0.6 mW) with suspended ridge and silicon-silica hybrid waveguide structures,” in 34th European Conference on Optical Communication 2008, (ECOC 2008), Vol. 5, pp. 55–56 (2008).

Käertner, F. X.

Kaneko, A.

R. Kasahara, K. Watanabe, M. Itoh, Y. Inoue, and A. Kaneko, “Extremely low power consumption thermooptic switch (0.6 mW) with suspended ridge and silicon-silica hybrid waveguide structures,” in 34th European Conference on Optical Communication 2008, (ECOC 2008), Vol. 5, pp. 55–56 (2008).

Kartner, F.

F. Gan, S. Spector, M. Geis, M. Grein, R. Schulein, J. Yoon, T. Lyszczarz, and F. Kartner, “Compact, low-power, high-speed silicon electro-optic modulator,” in Conference on Lasers and Electro-Optics, 2007 (CLEO 2007), paper CTuQ6 (2007).

Kasahara, R.

R. Kasahara, K. Watanabe, M. Itoh, Y. Inoue, and A. Kaneko, “Extremely low power consumption thermooptic switch (0.6 mW) with suspended ridge and silicon-silica hybrid waveguide structures,” in 34th European Conference on Optical Communication 2008, (ECOC 2008), Vol. 5, pp. 55–56 (2008).

Kim, D.-J.

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[CrossRef]

Kim, G.

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[CrossRef]

Kitatani, T.

Y. Ueda, S. Nakamura, S. Fujimoto, H. Yamada, K. Utaka, T. Shiota, and T. Kitatani, “Polarization-independent low-crosstalk operation of InAlGaAs-InAlAs Mach-Zehnder interferometer-type photonic switch with hybrid waveguide structure,” IEEE Photon. Technol. Lett. 21, 1118–1120 (2009).
[CrossRef]

Krishnamoorthy, A. V.

Kurahashi, T.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1 V peak-to-peak driven 10-Gbps slow-light silicon Mach–Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express 3, 072202 (2010).
[CrossRef]

Lee, J.-M.

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[CrossRef]

Lennon, D. M.

Li, G.

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[CrossRef]

Liang, H.

Liao, S.

Liu, J.

J. Liu and J. Michel, “High performance Ge devices for electronic-photonic integrated circuits,” ECS Trans. 16, 575–582 (2008).
[CrossRef]

Lyszczarz, T.

F. Gan, S. Spector, M. Geis, M. Grein, R. Schulein, J. Yoon, T. Lyszczarz, and F. Kartner, “Compact, low-power, high-speed silicon electro-optic modulator,” in Conference on Lasers and Electro-Optics, 2007 (CLEO 2007), paper CTuQ6 (2007).

Lyszczarz, T. M.

Michel, J.

J. Liu and J. Michel, “High performance Ge devices for electronic-photonic integrated circuits,” ECS Trans. 16, 575–582 (2008).
[CrossRef]

Mori, M.

S. Namiki, T. Hasama, M. Mori, M. Watanabe, and H. Ishikawa, “Dynamic optical path switching for ultra-low energy consumption and its enabling device technologies,” in International Symposium on Applications and the Internet (SAINT 2008), 393–396 (2008).

Nakamura, S.

Y. Ueda, S. Nakamura, S. Fujimoto, H. Yamada, K. Utaka, T. Shiota, and T. Kitatani, “Polarization-independent low-crosstalk operation of InAlGaAs-InAlAs Mach-Zehnder interferometer-type photonic switch with hybrid waveguide structure,” IEEE Photon. Technol. Lett. 21, 1118–1120 (2009).
[CrossRef]

Namiki, S.

S. Namiki, T. Hasama, M. Mori, M. Watanabe, and H. Ishikawa, “Dynamic optical path switching for ultra-low energy consumption and its enabling device technologies,” in International Symposium on Applications and the Internet (SAINT 2008), 393–396 (2008).

Orcutt, J. S.

Pyo, J.

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[CrossRef]

Roy, S.

L. Yang, J. R. Watling, R. C. W. Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, “Si/SiGe heterostructure parameters for device simulations,” Semicond. Sci. Technol. 19, 1174–1182 (2004).
[CrossRef]

Schulein, R.

F. Gan, S. Spector, M. Geis, M. Grein, R. Schulein, J. Yoon, T. Lyszczarz, and F. Kartner, “Compact, low-power, high-speed silicon electro-optic modulator,” in Conference on Lasers and Electro-Optics, 2007 (CLEO 2007), paper CTuQ6 (2007).

Schulein, R. T.

Selvaraja, S. K.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

Shafiiha, R.

Shiota, T.

Y. Ueda, S. Nakamura, S. Fujimoto, H. Yamada, K. Utaka, T. Shiota, and T. Kitatani, “Polarization-independent low-crosstalk operation of InAlGaAs-InAlAs Mach-Zehnder interferometer-type photonic switch with hybrid waveguide structure,” IEEE Photon. Technol. Lett. 21, 1118–1120 (2009).
[CrossRef]

Song, J. H.

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[CrossRef]

Spector, S.

F. Gan, S. Spector, M. Geis, M. Grein, R. Schulein, J. Yoon, T. Lyszczarz, and F. Kartner, “Compact, low-power, high-speed silicon electro-optic modulator,” in Conference on Lasers and Electro-Optics, 2007 (CLEO 2007), paper CTuQ6 (2007).

Spector, S. J.

Thourhout, D. V.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

Ueda, Y.

Y. Ueda, S. Nakamura, S. Fujimoto, H. Yamada, K. Utaka, T. Shiota, and T. Kitatani, “Polarization-independent low-crosstalk operation of InAlGaAs-InAlAs Mach-Zehnder interferometer-type photonic switch with hybrid waveguide structure,” IEEE Photon. Technol. Lett. 21, 1118–1120 (2009).
[CrossRef]

Usuki, T.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1 V peak-to-peak driven 10-Gbps slow-light silicon Mach–Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express 3, 072202 (2010).
[CrossRef]

Utaka, K.

Y. Ueda, S. Nakamura, S. Fujimoto, H. Yamada, K. Utaka, T. Shiota, and T. Kitatani, “Polarization-independent low-crosstalk operation of InAlGaAs-InAlAs Mach-Zehnder interferometer-type photonic switch with hybrid waveguide structure,” IEEE Photon. Technol. Lett. 21, 1118–1120 (2009).
[CrossRef]

Vlasov, Y. A.

Watanabe, K.

R. Kasahara, K. Watanabe, M. Itoh, Y. Inoue, and A. Kaneko, “Extremely low power consumption thermooptic switch (0.6 mW) with suspended ridge and silicon-silica hybrid waveguide structures,” in 34th European Conference on Optical Communication 2008, (ECOC 2008), Vol. 5, pp. 55–56 (2008).

Watanabe, M.

S. Namiki, T. Hasama, M. Mori, M. Watanabe, and H. Ishikawa, “Dynamic optical path switching for ultra-low energy consumption and its enabling device technologies,” in International Symposium on Applications and the Internet (SAINT 2008), 393–396 (2008).

Watling, J. R.

L. Yang, J. R. Watling, R. C. W. Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, “Si/SiGe heterostructure parameters for device simulations,” Semicond. Sci. Technol. 19, 1174–1182 (2004).
[CrossRef]

Wilkins, R. C. W.

L. Yang, J. R. Watling, R. C. W. Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, “Si/SiGe heterostructure parameters for device simulations,” Semicond. Sci. Technol. 19, 1174–1182 (2004).
[CrossRef]

Yamada, H.

Y. Ueda, S. Nakamura, S. Fujimoto, H. Yamada, K. Utaka, T. Shiota, and T. Kitatani, “Polarization-independent low-crosstalk operation of InAlGaAs-InAlAs Mach-Zehnder interferometer-type photonic switch with hybrid waveguide structure,” IEEE Photon. Technol. Lett. 21, 1118–1120 (2009).
[CrossRef]

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13, 10109–10114 (2005).
[CrossRef] [PubMed]

Yamamoto, T.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1 V peak-to-peak driven 10-Gbps slow-light silicon Mach–Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express 3, 072202 (2010).
[CrossRef]

Yang, L.

L. Yang, J. R. Watling, R. C. W. Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, “Si/SiGe heterostructure parameters for device simulations,” Semicond. Sci. Technol. 19, 1174–1182 (2004).
[CrossRef]

Yoon, J.

F. Gan, S. Spector, M. Geis, M. Grein, R. Schulein, J. Yoon, T. Lyszczarz, and F. Kartner, “Compact, low-power, high-speed silicon electro-optic modulator,” in Conference on Lasers and Electro-Optics, 2007 (CLEO 2007), paper CTuQ6 (2007).

Yoon, J. U.

Zheng, X.

Zhou, G.-R.

Appl. Phys. Express (1)

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1 V peak-to-peak driven 10-Gbps slow-light silicon Mach–Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express 3, 072202 (2010).
[CrossRef]

ECS Trans. (1)

J. Liu and J. Michel, “High performance Ge devices for electronic-photonic integrated circuits,” ECS Trans. 16, 575–582 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D.-J. Kim, J.-M. Lee, J. H. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[CrossRef]

Y. Ueda, S. Nakamura, S. Fujimoto, H. Yamada, K. Utaka, T. Shiota, and T. Kitatani, “Polarization-independent low-crosstalk operation of InAlGaAs-InAlAs Mach-Zehnder interferometer-type photonic switch with hybrid waveguide structure,” IEEE Photon. Technol. Lett. 21, 1118–1120 (2009).
[CrossRef]

Nat. Photonics (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[CrossRef]

Opt. Express (4)

Semicond. Sci. Technol. (1)

L. Yang, J. R. Watling, R. C. W. Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, “Si/SiGe heterostructure parameters for device simulations,” Semicond. Sci. Technol. 19, 1174–1182 (2004).
[CrossRef]

Other (3)

F. Gan, S. Spector, M. Geis, M. Grein, R. Schulein, J. Yoon, T. Lyszczarz, and F. Kartner, “Compact, low-power, high-speed silicon electro-optic modulator,” in Conference on Lasers and Electro-Optics, 2007 (CLEO 2007), paper CTuQ6 (2007).

R. Kasahara, K. Watanabe, M. Itoh, Y. Inoue, and A. Kaneko, “Extremely low power consumption thermooptic switch (0.6 mW) with suspended ridge and silicon-silica hybrid waveguide structures,” in 34th European Conference on Optical Communication 2008, (ECOC 2008), Vol. 5, pp. 55–56 (2008).

S. Namiki, T. Hasama, M. Mori, M. Watanabe, and H. Ishikawa, “Dynamic optical path switching for ultra-low energy consumption and its enabling device technologies,” in International Symposium on Applications and the Internet (SAINT 2008), 393–396 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Cross-sectional view of optical switch device with SiGe waveguide core, (b) Band diagram of Si/SiGe.

Fig. 2
Fig. 2

Accumulated carrier density in the intrinsic region of the proposed SiGe/Si structure and conventional Si structure.

Fig. 3
Fig. 3

Calculated switching power of the optical switches with proposed SiGe/Si structure and conventional Si structure with various phase shifter length.

Fig. 4
Fig. 4

Plan view of fabricated 2 × 2 Mach-Zehnder optical switch device with SiGe waveguide core.

Fig. 5
Fig. 5

Extinction curves of fabricated optical switch.

Fig. 6
Fig. 6

Transmission spectra of the fabricated optical switch at each operating state.

Fig. 7
Fig. 7

Relationships between switching power and phase shifter length for various carrier-plasma-induced broadband optical switches. ‘Si’ represents the conventional Si optical switch reported by Zhou al. [12], Campenhout et al. [7] and Dong et al. [8]. ‘SiGe’ represents this work. There is a plot for the optical switch made up of the III–V semiconductor reported by Ueda et al. [13], indicated with ‘III–V’ as a reference.

Fig. 8
Fig. 8

Dynamic switching characteristics of fabricated optical switch.

Fig. 9
Fig. 9

Logarithmic plot of dynamic switching characteristics of fabricated optical switch.

Fig. 10
Fig. 10

Schematic view of pre-compensation driving circuit.

Fig. 11
Fig. 11

Dynamic switching characteristics of fabricated optical switch driven by using the pre-compensation circuit.

Metrics