Abstract

Terahertz (THz) wave generation via four-wave mixing (FWM) in silicon membrane waveguides is theoretically investigated with mid-infrared laser pulses. Compared with the conventional parametric amplification or wavelength conversion based on FWM in silicon waveguides, which needs a pump wavelength located in the anomalous group-velocity dispersion (GVD) regime to realize broad phase matching, the pump wavelength located in the normal GVD regime is required to realize collinear phase matching for the THz-wave generation via FWM. The pump wavelength and rib height of the silicon membrane waveguide can be tuned to obtain a broadband phase matching. Moreover, the conversion efficiency of the THz-wave generation is studied with different pump wavelengths and rib heights of the silicon membrane waveguides, and broadband THz-wave can be obtained with high efficiency exceeding 1%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Takushima, S. Y. Shin, and Y. C. Chung, “Design of a LiNbO(3) ribbon waveguide for efficient difference-frequency generation of terahertz wave in the collinear configuration,” Opt. Express 15(22), 14783–14792 (2007).
    [CrossRef] [PubMed]
  2. K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz-wave parametric generator with wide tenability,” Appl. Phys. Lett. 80(2), 195–198 (2002).
    [CrossRef]
  3. A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, “Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies,” Opt. Lett. 30(24), 3392–3394 (2005).
    [CrossRef] [PubMed]
  4. X. Xie, J. Xu, and X.-C. Zhang, “Terahertz wave generation and detection from a cdte crystal characterized by different excitation wavelengths,” Opt. Lett. 31(7), 978–980 (2006).
    [CrossRef] [PubMed]
  5. T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16(9), 6471–6478 (2008).
    [CrossRef] [PubMed]
  6. K. L. Vodopyanov and Y. H. Avetisyan, “Optical terahertz wave generation in a planar GaAs waveguide,” Opt. Lett. 33(20), 2314–2316 (2008).
    [CrossRef] [PubMed]
  7. Y. J. Ding, “Efficient generation of high-frequency terahertz waves from highly lossy second-order nonlinear medium at polariton resonance under transverse-pumping geometry,” Opt. Lett. 35(2), 262–264 (2010).
    [CrossRef] [PubMed]
  8. Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30(21), 2927–2929 (2005).
    [CrossRef] [PubMed]
  9. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31(7), 957–959 (2006).
    [CrossRef] [PubMed]
  10. T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
    [CrossRef] [PubMed]
  11. Y. H. Avetisyan, “Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique,” Opt. Lett. 35(15), 2508–2510 (2010).
    [CrossRef] [PubMed]
  12. K. Suizu and K. Kawase, “Terahertz-wave generation in a conventional optical fiber,” Opt. Lett. 32(20), 2990–2992 (2007).
    [CrossRef] [PubMed]
  13. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
    [CrossRef] [PubMed]
  14. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005).
    [CrossRef]
  15. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840 (2006).
    [CrossRef]
  16. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32(4), 391–393 (2007).
    [CrossRef] [PubMed]
  17. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
    [CrossRef] [PubMed]
  18. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011).
    [CrossRef] [PubMed]
  19. M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  21. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  22. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006).
    [CrossRef] [PubMed]
  23. G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol. 23(6), 064002 (2008).
    [CrossRef]
  24. T. E. Murphy, software available at http://www.photonics.umd.edu .
  25. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16(14), 10596–10610 (2008).
    [CrossRef] [PubMed]
  26. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophtonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
    [CrossRef]
  27. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1(1), 162–235 (2009).
    [CrossRef]
  28. Z. Wang, H. Liu, N. Huang, Q. Sun, and J. Wen, “Impact of dispersion profiles of silicon waveguides on optical parametric amplification in the femtosecond regime,” Opt. Express 19(24), 24730–24737 (2011).
    [CrossRef] [PubMed]
  29. E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18(21), 21981–21989 (2010).
    [CrossRef] [PubMed]
  30. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
    [CrossRef]
  31. N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
    [CrossRef]
  32. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
    [CrossRef] [PubMed]
  33. http://www.nature.com/nphoton/journal/v4/n8/full/nphoton.2010.173.html .

2011

2010

2009

2008

2007

2006

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840 (2006).
[CrossRef]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[CrossRef] [PubMed]

K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31(7), 957–959 (2006).
[CrossRef] [PubMed]

X. Xie, J. Xu, and X.-C. Zhang, “Terahertz wave generation and detection from a cdte crystal characterized by different excitation wavelengths,” Opt. Lett. 31(7), 978–980 (2006).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006).
[CrossRef] [PubMed]

2005

2002

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz-wave parametric generator with wide tenability,” Appl. Phys. Lett. 80(2), 195–198 (2002).
[CrossRef]

Agrawal, G. P.

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Avetisyan, Y.

Avetisyan, Y. H.

Bettiol, A. A.

G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol. 23(6), 064002 (2008).
[CrossRef]

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Bolten, J.

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011).
[CrossRef] [PubMed]

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Boyraz, O.

Breese, M. B. H.

G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol. 23(6), 064002 (2008).
[CrossRef]

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[CrossRef]

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840 (2006).
[CrossRef]

Chen, X.

Chen, Y. H.

Chiang, A. C.

Chmielak, B.

Chung, Y. C.

Dadap, J. I.

Ding, Y. J.

Dulkeith, E.

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840 (2006).
[CrossRef]

Espinola, R. L.

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Fauchet, P. M.

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Fukuda, H.

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Gao, S.

Green, W. M. J.

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Hon, N. K.

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[CrossRef]

Hsieh, I.

Hu, Y.

Huang, N.

Huang, Y.

Huang, Y. C.

Ikari, T.

Imai, K.

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz-wave parametric generator with wide tenability,” Appl. Phys. Lett. 80(2), 195–198 (2002).
[CrossRef]

Itabashi, S.

Ito, H.

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Jalali, B.

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[CrossRef]

Johnson, T. J.

Kalyoncu, S. K.

Kawase, K.

K. Suizu and K. Kawase, “Terahertz-wave generation in a conventional optical fiber,” Opt. Lett. 32(20), 2990–2992 (2007).
[CrossRef] [PubMed]

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz-wave parametric generator with wide tenability,” Appl. Phys. Lett. 80(2), 195–198 (2002).
[CrossRef]

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Kurz, H.

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011).
[CrossRef] [PubMed]

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Lee, H. H.

Lin, Q.

Lin, S. T.

Lin, Y. Y.

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Liu, H.

Liu, X.

Mashanovich, G. Z.

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol. 23(6), 064002 (2008).
[CrossRef]

Matavulj, P.

G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol. 23(6), 064002 (2008).
[CrossRef]

Matheisen, C.

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011).
[CrossRef] [PubMed]

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

McNab, S. J.

Merget, F.

Michael, C. P.

Milosevic, M.

G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol. 23(6), 064002 (2008).
[CrossRef]

Miloševic, M. M.

Minamide, H.

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[CrossRef] [PubMed]

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz-wave parametric generator with wide tenability,” Appl. Phys. Lett. 80(2), 195–198 (2002).
[CrossRef]

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Nagel, M.

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011).
[CrossRef] [PubMed]

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

Nedeljkovic, M.

Osgood, R. M.

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Owens, N.

Painter, O. J.

Panoiu, N. C.

Perahia, R.

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Qian, F.

Reed, G. T.

G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol. 23(6), 064002 (2008).
[CrossRef]

Ripperda, C.

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[CrossRef]

Sasaki, Y.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Shikata, J.

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz-wave parametric generator with wide tenability,” Appl. Phys. Lett. 80(2), 195–198 (2002).
[CrossRef]

Shin, S. Y.

Shoji, T.

Song, Q.

Soref, R.

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[CrossRef]

Soref, R. A.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840 (2006).
[CrossRef]

Stankovic, S.

G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol. 23(6), 064002 (2008).
[CrossRef]

Suizu, K.

Sun, Q.

Suzuki, Y.

Takahashi, J.

Takahashi, M.

Takushima, Y.

Teo, E. J.

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol. 23(6), 064002 (2008).
[CrossRef]

Tien, E. K.

Timotijevic, B.

G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol. 23(6), 064002 (2008).
[CrossRef]

Tsuchizawa, T.

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[CrossRef]

Vlasov, Y. A.

Vodopyanov, K. L.

Wächter, M.

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

Wahlbrink, T.

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011).
[CrossRef] [PubMed]

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

Waldow, M.

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011).
[CrossRef] [PubMed]

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

Wang, T. D.

Wang, Z.

Watanabe, T.

Wen, J.

Xie, X.

Xiong, B.

Xu, J.

Yamada, K.

Yang, P. Y.

G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol. 23(6), 064002 (2008).
[CrossRef]

Yin, L.

Yokoyama, H.

Zhang, J.

Zhang, X.

Zhang, X.-C.

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Adv. Opt. Photon.

Appl. Phys. Lett.

K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz-wave parametric generator with wide tenability,” Appl. Phys. Lett. 80(2), 195–198 (2002).
[CrossRef]

M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[CrossRef]

J. Appl. Phys.

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840 (2006).
[CrossRef]

Nat. Photonics

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophtonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[CrossRef]

Nature

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Opt. Express

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
[CrossRef] [PubMed]

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006).
[CrossRef] [PubMed]

Y. Takushima, S. Y. Shin, and Y. C. Chung, “Design of a LiNbO(3) ribbon waveguide for efficient difference-frequency generation of terahertz wave in the collinear configuration,” Opt. Express 15(22), 14783–14792 (2007).
[CrossRef] [PubMed]

T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16(9), 6471–6478 (2008).
[CrossRef] [PubMed]

Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16(14), 10596–10610 (2008).
[CrossRef] [PubMed]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011).
[CrossRef] [PubMed]

Z. Wang, H. Liu, N. Huang, Q. Sun, and J. Wen, “Impact of dispersion profiles of silicon waveguides on optical parametric amplification in the femtosecond regime,” Opt. Express 19(24), 24730–24737 (2011).
[CrossRef] [PubMed]

Opt. Lett.

K. L. Vodopyanov and Y. H. Avetisyan, “Optical terahertz wave generation in a planar GaAs waveguide,” Opt. Lett. 33(20), 2314–2316 (2008).
[CrossRef] [PubMed]

Y. J. Ding, “Efficient generation of high-frequency terahertz waves from highly lossy second-order nonlinear medium at polariton resonance under transverse-pumping geometry,” Opt. Lett. 35(2), 262–264 (2010).
[CrossRef] [PubMed]

Y. H. Avetisyan, “Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique,” Opt. Lett. 35(15), 2508–2510 (2010).
[CrossRef] [PubMed]

L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32(4), 391–393 (2007).
[CrossRef] [PubMed]

K. Suizu and K. Kawase, “Terahertz-wave generation in a conventional optical fiber,” Opt. Lett. 32(20), 2990–2992 (2007).
[CrossRef] [PubMed]

K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31(7), 957–959 (2006).
[CrossRef] [PubMed]

X. Xie, J. Xu, and X.-C. Zhang, “Terahertz wave generation and detection from a cdte crystal characterized by different excitation wavelengths,” Opt. Lett. 31(7), 978–980 (2006).
[CrossRef] [PubMed]

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, “Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies,” Opt. Lett. 30(24), 3392–3394 (2005).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol. 23(6), 064002 (2008).
[CrossRef]

Other

T. E. Murphy, software available at http://www.photonics.umd.edu .

http://www.nature.com/nphoton/journal/v4/n8/full/nphoton.2010.173.html .

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of (a) energy-conservation diagram and (b) the phase-matching condition for collinear phase matching.

Fig. 2
Fig. 2

Left: rib silicon membrane waveguide dimension; Right: the TM mode profiles of the silicon membrane waveguide at the wavelength of 35 μm for different rib heights.

Fig. 3
Fig. 3

Plots of computed effective index of refraction (a), and (b) GVD dispersion (c) forth order dispersion (d) sixth order dispersion as a function of pump wavelength for different rib heights.

Fig. 4
Fig. 4

The fundamental TM mode profiles of the waveguides with different rib heights.

Fig. 5
Fig. 5

Linear phase mismatch as a function of THz wavelength for different pump wavelengths when the rib height is 15 μm.

Fig. 6
Fig. 6

(a) Linear phase mismatch as a function of THz wavelength for different pump wavelengths, and (b) signal wavelength and related THz-wavelength depend on pump wavelength for collinear phase-matched THz-wave generation when the rib height is 15 μm.

Fig. 7
Fig. 7

(a) Linear phase mismatch as a function of THz wavelength for different rib heights, and (b) signal wavelength and related THz-wavelength depend on rib heights for collinear phase-matched THz-wave generation when the pump wavelength is 4.3 μm.

Fig. 8
Fig. 8

(a) The THz-wave peak power depends on distance for different pump peak powers; (b) The output spectra of THz-wave with different pump peak powers when the distance is 6 mm.

Fig. 9
Fig. 9

The conversion efficiency as a function of THz-wavelength when the signal wavelength is tuned from 2299.8 nm to 2304.9 nm for a fixed pump located at 4.3 μm.

Fig. 10
Fig. 10

(a) The peak power and related wavelength of THz-wave as a function of pump wavelength and (b) the corresponding output spectra of THz-wave when the rib height is 15 μm.

Fig. 11
Fig. 11

(a) The THz-wave peak power and related THz-wavelength as a function of rib height and (b) the corresponding output spectra of THz-wave when the pump wavelength is 4.3 μm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2 ω p ω s ω THz =0,
k s + k THz 2 k p + k NL =0,
k L = β 2p Ω sp 2 +2 m=2 β 2mp (2m)! Ω sp 2m ,
W H 0.3+ r 1 r 2 ,
d A p dz = α p 2 A p +i γ p | A p | 2 A p +2i γ ps | A s | 2 A p +2i γ pt | A t | 2 A p +2i γ p A s A t A p * exp( i k L z ),
d A s dz = α s 2 A s +i γ s | A s | 2 A s +2i γ sp | A p | 2 A s +2i γ st | A t | 2 A s +i γ s A p 2 A t * exp( i k L z ),
d A t dz = α t 2 A t +i γ t | A t | 2 A t +2i γ tp | A p | 2 A t +2i γ ts | A s | 2 A t +i γ t A p 2 A s * exp( i k L z ),
η= P THz out / P pump in

Metrics