Abstract

We present a narrow linewidth continuous laser source with over 11 W output power at 780 nm, based on single-pass frequency doubling of an amplified 1560 nm fibre laser with 36% efficiency. This source offers a combination of high power, simplicity, mode quality and stability. Without any active stabilization, the linewidth is measured to be below 10 kHz. The fibre seed is tunable over 60 GHz, which allows access to the D2 transitions in 87Rb and 85Rb, providing a viable high-power source for laser cooling as well as for large-momentum-transfer beamsplitters in atom interferometry. Sources of this type will pave the way for a new generation of high flux, high duty-cycle degenerate quantum gas experiments.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Jollenbeck, J. Mahnke, R. Randoll, W. Ertmer, J. Arlt, and C. Klempt “Hexapole-compensated magneto-optical trap on a mesoscopic atom chip,” Phys. Rev. A 83, 043406 (2011).
    [CrossRef]
  2. M. Olshanii and D. Weiss, “Producing Bose-Einstein condensates using optical lattices,” Phys. Rev. Lett. 89, 090404 (2002).
    [CrossRef] [PubMed]
  3. H. Muller, S. Chiow, Q. Long, S. Herrmann, and S. Chu “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
    [CrossRef] [PubMed]
  4. S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran “Atomic gravitational wave interferometric sensor,” Phys. Rev. D 78, 122002 (2008).
    [CrossRef]
  5. S. S. Szigeti, J. E. Debs, J. J. Hope, N. P. Robins, and J. D. Close “Why momentum width matters for atom interferometry with Bragg pulses,” New J. Phys. 14, 023009 (2012).
    [CrossRef]
  6. K. B. MacAdam, A. Steinbach, and C. Wieman “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098 (1992).
    [CrossRef]
  7. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch “A compact grating-stabilized diode laser system for atomic physics,” Opt. Comm. 117, 541 (1995).
    [CrossRef]
  8. L. R. Taylor, Y. Feng, and D. B. Calia, “50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express 18, 8540–8555 (2010).
    [CrossRef] [PubMed]
  9. Y. Feng, L. R. Taylor, and D. B. Calia, “25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star,” Opt. Express 17, 19021–19026 (2009).
    [CrossRef]
  10. S. Chiow, S. Herrmann, H. Muller, and S. Chu “6 W, 1 kHz linewidth, tunable continuous-wave near-infrared laser,” Opt. Express 17, 5246 (2009).
    [CrossRef] [PubMed]
  11. S.-Y. Lan, P.-C. Kuan, B. Estey, P. Haslinger, and H. Müller “Influence of the Coriolis force in atom interferometry,” accepted Phys. Rev. Lett. (2012).
  12. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electr. Lett. 44, 582–583 (2008).
    [CrossRef]
  13. J. Walling, O. Peterson, and R. Morris, “Tunable CW alexandrite laser,” IEEE J. Quantum Electron. 16, 120–121 (1980).
    [CrossRef]
  14. J. Zweiback and W. F. Krupke “28W average power hydrocarbon-free rubidium diode pumped alkali laser,” Opt. Express 18, 1444–1449 (2010).
    [CrossRef] [PubMed]
  15. R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, and L. Maleki “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11, 1709 (2003).
    [CrossRef] [PubMed]
  16. F. Lienhart, S. Boussen, O. Carat, N. Zahzam, Y. Bidel, and A. Bresson “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89, 177 (2007).
    [CrossRef]
  17. V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36, 4128 (2011).
    [CrossRef] [PubMed]
  18. NP Photonics, The Rock.
  19. IPG photonics.
  20. PPLN crystal supplied by Covesion Ltd.
  21. J. Feng, Y. Li, X. Tian, J. Liu, and K. Zhang “Noise suppression, linewidth narrowing of a master oscillator power amplifier at 1.56nm and the second harmonic generation output at 780nm,” Opt. Express 16, 11871 (2008).
    [CrossRef] [PubMed]
  22. F. Kéfélian, H. Jiang, P. Lemonde, and G. Santarelli, “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line,” Opt. Lett. 34, 914–916 (2009).
    [CrossRef] [PubMed]

2012

S. S. Szigeti, J. E. Debs, J. J. Hope, N. P. Robins, and J. D. Close “Why momentum width matters for atom interferometry with Bragg pulses,” New J. Phys. 14, 023009 (2012).
[CrossRef]

S.-Y. Lan, P.-C. Kuan, B. Estey, P. Haslinger, and H. Müller “Influence of the Coriolis force in atom interferometry,” accepted Phys. Rev. Lett. (2012).

2011

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36, 4128 (2011).
[CrossRef] [PubMed]

S. Jollenbeck, J. Mahnke, R. Randoll, W. Ertmer, J. Arlt, and C. Klempt “Hexapole-compensated magneto-optical trap on a mesoscopic atom chip,” Phys. Rev. A 83, 043406 (2011).
[CrossRef]

2010

2009

2008

H. Muller, S. Chiow, Q. Long, S. Herrmann, and S. Chu “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef] [PubMed]

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran “Atomic gravitational wave interferometric sensor,” Phys. Rev. D 78, 122002 (2008).
[CrossRef]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electr. Lett. 44, 582–583 (2008).
[CrossRef]

J. Feng, Y. Li, X. Tian, J. Liu, and K. Zhang “Noise suppression, linewidth narrowing of a master oscillator power amplifier at 1.56nm and the second harmonic generation output at 780nm,” Opt. Express 16, 11871 (2008).
[CrossRef] [PubMed]

2007

F. Lienhart, S. Boussen, O. Carat, N. Zahzam, Y. Bidel, and A. Bresson “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89, 177 (2007).
[CrossRef]

2003

2002

M. Olshanii and D. Weiss, “Producing Bose-Einstein condensates using optical lattices,” Phys. Rev. Lett. 89, 090404 (2002).
[CrossRef] [PubMed]

1995

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch “A compact grating-stabilized diode laser system for atomic physics,” Opt. Comm. 117, 541 (1995).
[CrossRef]

1992

K. B. MacAdam, A. Steinbach, and C. Wieman “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098 (1992).
[CrossRef]

1980

J. Walling, O. Peterson, and R. Morris, “Tunable CW alexandrite laser,” IEEE J. Quantum Electron. 16, 120–121 (1980).
[CrossRef]

Arlt, J.

S. Jollenbeck, J. Mahnke, R. Randoll, W. Ertmer, J. Arlt, and C. Klempt “Hexapole-compensated magneto-optical trap on a mesoscopic atom chip,” Phys. Rev. A 83, 043406 (2011).
[CrossRef]

Aveline, D. C.

Battelier, B.

Bidel, Y.

F. Lienhart, S. Boussen, O. Carat, N. Zahzam, Y. Bidel, and A. Bresson “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89, 177 (2007).
[CrossRef]

Boussen, S.

F. Lienhart, S. Boussen, O. Carat, N. Zahzam, Y. Bidel, and A. Bresson “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89, 177 (2007).
[CrossRef]

Bouyer, P.

Bresson, A.

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36, 4128 (2011).
[CrossRef] [PubMed]

F. Lienhart, S. Boussen, O. Carat, N. Zahzam, Y. Bidel, and A. Bresson “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89, 177 (2007).
[CrossRef]

Calia, D. B.

Carat, O.

F. Lienhart, S. Boussen, O. Carat, N. Zahzam, Y. Bidel, and A. Bresson “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89, 177 (2007).
[CrossRef]

Chiow, S.

S. Chiow, S. Herrmann, H. Muller, and S. Chu “6 W, 1 kHz linewidth, tunable continuous-wave near-infrared laser,” Opt. Express 17, 5246 (2009).
[CrossRef] [PubMed]

H. Muller, S. Chiow, Q. Long, S. Herrmann, and S. Chu “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef] [PubMed]

Chu, S.

S. Chiow, S. Herrmann, H. Muller, and S. Chu “6 W, 1 kHz linewidth, tunable continuous-wave near-infrared laser,” Opt. Express 17, 5246 (2009).
[CrossRef] [PubMed]

H. Muller, S. Chiow, Q. Long, S. Herrmann, and S. Chu “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef] [PubMed]

Close, J. D.

S. S. Szigeti, J. E. Debs, J. J. Hope, N. P. Robins, and J. D. Close “Why momentum width matters for atom interferometry with Bragg pulses,” New J. Phys. 14, 023009 (2012).
[CrossRef]

Debs, J. E.

S. S. Szigeti, J. E. Debs, J. J. Hope, N. P. Robins, and J. D. Close “Why momentum width matters for atom interferometry with Bragg pulses,” New J. Phys. 14, 023009 (2012).
[CrossRef]

Dimopoulos, S.

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran “Atomic gravitational wave interferometric sensor,” Phys. Rev. D 78, 122002 (2008).
[CrossRef]

Ertmer, W.

S. Jollenbeck, J. Mahnke, R. Randoll, W. Ertmer, J. Arlt, and C. Klempt “Hexapole-compensated magneto-optical trap on a mesoscopic atom chip,” Phys. Rev. A 83, 043406 (2011).
[CrossRef]

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch “A compact grating-stabilized diode laser system for atomic physics,” Opt. Comm. 117, 541 (1995).
[CrossRef]

Estey, B.

S.-Y. Lan, P.-C. Kuan, B. Estey, P. Haslinger, and H. Müller “Influence of the Coriolis force in atom interferometry,” accepted Phys. Rev. Lett. (2012).

Feng, J.

Feng, Y.

Geiger, R.

Graham, P. W.

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran “Atomic gravitational wave interferometric sensor,” Phys. Rev. D 78, 122002 (2008).
[CrossRef]

Hänsch, T. W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch “A compact grating-stabilized diode laser system for atomic physics,” Opt. Comm. 117, 541 (1995).
[CrossRef]

Haslinger, P.

S.-Y. Lan, P.-C. Kuan, B. Estey, P. Haslinger, and H. Müller “Influence of the Coriolis force in atom interferometry,” accepted Phys. Rev. Lett. (2012).

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch “A compact grating-stabilized diode laser system for atomic physics,” Opt. Comm. 117, 541 (1995).
[CrossRef]

Herrmann, S.

S. Chiow, S. Herrmann, H. Muller, and S. Chu “6 W, 1 kHz linewidth, tunable continuous-wave near-infrared laser,” Opt. Express 17, 5246 (2009).
[CrossRef] [PubMed]

H. Muller, S. Chiow, Q. Long, S. Herrmann, and S. Chu “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef] [PubMed]

Hogan, J. M.

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran “Atomic gravitational wave interferometric sensor,” Phys. Rev. D 78, 122002 (2008).
[CrossRef]

Hope, J. J.

S. S. Szigeti, J. E. Debs, J. J. Hope, N. P. Robins, and J. D. Close “Why momentum width matters for atom interferometry with Bragg pulses,” New J. Phys. 14, 023009 (2012).
[CrossRef]

Jiang, H.

Jollenbeck, S.

S. Jollenbeck, J. Mahnke, R. Randoll, W. Ertmer, J. Arlt, and C. Klempt “Hexapole-compensated magneto-optical trap on a mesoscopic atom chip,” Phys. Rev. A 83, 043406 (2011).
[CrossRef]

Kasevich, M. A.

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran “Atomic gravitational wave interferometric sensor,” Phys. Rev. D 78, 122002 (2008).
[CrossRef]

Kéfélian, F.

Klempt, C.

S. Jollenbeck, J. Mahnke, R. Randoll, W. Ertmer, J. Arlt, and C. Klempt “Hexapole-compensated magneto-optical trap on a mesoscopic atom chip,” Phys. Rev. A 83, 043406 (2011).
[CrossRef]

Knize, R. J.

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electr. Lett. 44, 582–583 (2008).
[CrossRef]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch “A compact grating-stabilized diode laser system for atomic physics,” Opt. Comm. 117, 541 (1995).
[CrossRef]

Krupke, W. F.

Kuan, P.-C.

S.-Y. Lan, P.-C. Kuan, B. Estey, P. Haslinger, and H. Müller “Influence of the Coriolis force in atom interferometry,” accepted Phys. Rev. Lett. (2012).

Lan, S.-Y.

S.-Y. Lan, P.-C. Kuan, B. Estey, P. Haslinger, and H. Müller “Influence of the Coriolis force in atom interferometry,” accepted Phys. Rev. Lett. (2012).

Landragin, A.

Lemonde, P.

Li, Y.

Lienhart, F.

F. Lienhart, S. Boussen, O. Carat, N. Zahzam, Y. Bidel, and A. Bresson “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89, 177 (2007).
[CrossRef]

Liu, J.

Long, Q.

H. Muller, S. Chiow, Q. Long, S. Herrmann, and S. Chu “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef] [PubMed]

Lundblad, N.

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, and C. Wieman “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Mahnke, J.

S. Jollenbeck, J. Mahnke, R. Randoll, W. Ertmer, J. Arlt, and C. Klempt “Hexapole-compensated magneto-optical trap on a mesoscopic atom chip,” Phys. Rev. A 83, 043406 (2011).
[CrossRef]

Maleki, L.

Ménoret, V.

Morris, R.

J. Walling, O. Peterson, and R. Morris, “Tunable CW alexandrite laser,” IEEE J. Quantum Electron. 16, 120–121 (1980).
[CrossRef]

Muller, H.

S. Chiow, S. Herrmann, H. Muller, and S. Chu “6 W, 1 kHz linewidth, tunable continuous-wave near-infrared laser,” Opt. Express 17, 5246 (2009).
[CrossRef] [PubMed]

H. Muller, S. Chiow, Q. Long, S. Herrmann, and S. Chu “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef] [PubMed]

Müller, H.

S.-Y. Lan, P.-C. Kuan, B. Estey, P. Haslinger, and H. Müller “Influence of the Coriolis force in atom interferometry,” accepted Phys. Rev. Lett. (2012).

Olshanii, M.

M. Olshanii and D. Weiss, “Producing Bose-Einstein condensates using optical lattices,” Phys. Rev. Lett. 89, 090404 (2002).
[CrossRef] [PubMed]

Peterson, O.

J. Walling, O. Peterson, and R. Morris, “Tunable CW alexandrite laser,” IEEE J. Quantum Electron. 16, 120–121 (1980).
[CrossRef]

Rajendran, S.

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran “Atomic gravitational wave interferometric sensor,” Phys. Rev. D 78, 122002 (2008).
[CrossRef]

Randoll, R.

S. Jollenbeck, J. Mahnke, R. Randoll, W. Ertmer, J. Arlt, and C. Klempt “Hexapole-compensated magneto-optical trap on a mesoscopic atom chip,” Phys. Rev. A 83, 043406 (2011).
[CrossRef]

Ricci, L.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch “A compact grating-stabilized diode laser system for atomic physics,” Opt. Comm. 117, 541 (1995).
[CrossRef]

Robins, N. P.

S. S. Szigeti, J. E. Debs, J. J. Hope, N. P. Robins, and J. D. Close “Why momentum width matters for atom interferometry with Bragg pulses,” New J. Phys. 14, 023009 (2012).
[CrossRef]

Santarelli, G.

Sell, J.

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electr. Lett. 44, 582–583 (2008).
[CrossRef]

Steinbach, A.

K. B. MacAdam, A. Steinbach, and C. Wieman “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Stern, G.

Szigeti, S. S.

S. S. Szigeti, J. E. Debs, J. J. Hope, N. P. Robins, and J. D. Close “Why momentum width matters for atom interferometry with Bragg pulses,” New J. Phys. 14, 023009 (2012).
[CrossRef]

Taylor, L. R.

Thompson, R. J.

Tian, X.

Tu, M.

Vuletic, V.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch “A compact grating-stabilized diode laser system for atomic physics,” Opt. Comm. 117, 541 (1995).
[CrossRef]

Walling, J.

J. Walling, O. Peterson, and R. Morris, “Tunable CW alexandrite laser,” IEEE J. Quantum Electron. 16, 120–121 (1980).
[CrossRef]

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch “A compact grating-stabilized diode laser system for atomic physics,” Opt. Comm. 117, 541 (1995).
[CrossRef]

Weiss, D.

M. Olshanii and D. Weiss, “Producing Bose-Einstein condensates using optical lattices,” Phys. Rev. Lett. 89, 090404 (2002).
[CrossRef] [PubMed]

Wieman, C.

K. B. MacAdam, A. Steinbach, and C. Wieman “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Zahzam, N.

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36, 4128 (2011).
[CrossRef] [PubMed]

F. Lienhart, S. Boussen, O. Carat, N. Zahzam, Y. Bidel, and A. Bresson “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89, 177 (2007).
[CrossRef]

Zhang, K.

Zhdanov, B. V.

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electr. Lett. 44, 582–583 (2008).
[CrossRef]

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch “A compact grating-stabilized diode laser system for atomic physics,” Opt. Comm. 117, 541 (1995).
[CrossRef]

Zweiback, J.

Am. J. Phys.

K. B. MacAdam, A. Steinbach, and C. Wieman “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Appl. Phys. B

F. Lienhart, S. Boussen, O. Carat, N. Zahzam, Y. Bidel, and A. Bresson “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89, 177 (2007).
[CrossRef]

Electr. Lett.

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electr. Lett. 44, 582–583 (2008).
[CrossRef]

IEEE J. Quantum Electron.

J. Walling, O. Peterson, and R. Morris, “Tunable CW alexandrite laser,” IEEE J. Quantum Electron. 16, 120–121 (1980).
[CrossRef]

New J. Phys.

S. S. Szigeti, J. E. Debs, J. J. Hope, N. P. Robins, and J. D. Close “Why momentum width matters for atom interferometry with Bragg pulses,” New J. Phys. 14, 023009 (2012).
[CrossRef]

Opt. Comm.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch “A compact grating-stabilized diode laser system for atomic physics,” Opt. Comm. 117, 541 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. Jollenbeck, J. Mahnke, R. Randoll, W. Ertmer, J. Arlt, and C. Klempt “Hexapole-compensated magneto-optical trap on a mesoscopic atom chip,” Phys. Rev. A 83, 043406 (2011).
[CrossRef]

Phys. Rev. D

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran “Atomic gravitational wave interferometric sensor,” Phys. Rev. D 78, 122002 (2008).
[CrossRef]

Phys. Rev. Lett.

M. Olshanii and D. Weiss, “Producing Bose-Einstein condensates using optical lattices,” Phys. Rev. Lett. 89, 090404 (2002).
[CrossRef] [PubMed]

H. Muller, S. Chiow, Q. Long, S. Herrmann, and S. Chu “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008).
[CrossRef] [PubMed]

S.-Y. Lan, P.-C. Kuan, B. Estey, P. Haslinger, and H. Müller “Influence of the Coriolis force in atom interferometry,” accepted Phys. Rev. Lett. (2012).

Other

NP Photonics, The Rock.

IPG photonics.

PPLN crystal supplied by Covesion Ltd.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. The seed and fiber amplifier are not shown in the diagram. PPLN - periodically-poled lithium niobate crystal, HWP - half-wave plate, QWP - quarter-wave plate, PBS - polarizing beamsplitter. After the oven, the 780nm and 1560nm light are separated by the dichoric mirrors.

Fig. 2
Fig. 2

Measured second harmonic power as a function of input power from a single 40 mm PPLN crystal. The maximum output power is 11.4 Watts at 780 nm. The inset shows the spatial mode of the output.

Fig. 3
Fig. 3

Frequency noise spectrum measured using an unequal path length Mach-Zehnder interferometer as described in the text. The gray curve shows the detector noise. Integrating from 10 Hz to 5 MHz gives a linewidth of 6 kHz.

Metrics