Abstract

A radio frequency (RF) carrier can be used to mitigate the phase noise impact in n-level PSK and QAM systems. The systems performance is influenced by the use of an RF pilot carrier to accomplish phase noise compensation through complex multiplication in combination with discrete filters to compensate for the chromatic dispersion (CD). We perform a detailed study comparing two filters for the CD compensation namely the fixed frequency domain equalizer (FDE) filter and the adaptive least-mean-square (LMS) filter. The study provides important novel physical insight into the equalization enhanced phase noise (EEPN) influence on the system bit-error-rate (BER) versus optical signal-to-noise-ratio (OSNR) performance. Important results of the analysis are that the FDE filter position relative to the RF carrier phase noise compensation module provides a possibility for choosing whether the EEPN from the Tx or the LO laser influences the system quality. The LMS filter works very inefficiently when placed prior to the RF phase noise compensation stage of the Rx whereas it works much more efficiently and gives almost the same performance as the FDE filter when placed after the RF phase noise compensation stage.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. 21(12), 1862–1879 (1985).
    [CrossRef]
  2. G. P. Agrawal, Fiber-optic communication systems, 3rd ed. (John Wiley & Sons, Inc., 2002), Chap. 2.
  3. J. G. Proakis, Digital Communications 5th ed. (McGraw-Hill Companies, Inc., 2008), Chap.10.
  4. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
    [CrossRef]
  5. A. Färbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J. P. Elbers, H. Wernz, H. Griesser, and C. Glingener, “Performance of a 10.7 Gb/s Receiver with digital equaliser using maximum likelihood sequence estimation,” in Proceeding of IEEE European Conference on Optical Communication (Stockholm, Sweden, 2004), paper Th4.1.5.
  6. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
    [CrossRef] [PubMed]
  7. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  8. S. J. Savory, “Compensation of fibre impairments in digital coherent systems,” in Proceeding of IEEE European Conference on Optical Communication (Brussels, Belgium, 2008), paper Mo.3.D.1.
  9. K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” in Proceeding of IEEE European Conference on Optical Communication (Brussels, Belgium, 2008), paper We.2.E.3.
  10. M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, A. Napoli, and B. Lankl, “Adaptive chromatic dispersion equalization for non-dispersion managed coherent systems,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT1.
  11. R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, E. Yamada, H. Masuda, Y. Miyamoto, and M. Mizoguchi, “Two-stage overlap frequency domain equalization for long-haul optical systems,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT3.
  12. T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
    [CrossRef] [PubMed]
  13. W. Shieh and K. P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express 16(20), 15718–15727 (2008).
    [CrossRef] [PubMed]
  14. A. P. T. Lau, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100Gb/s transmission with coherent detection,” in Proceedings of OptoElectronics and Communications Conference (Hong Kong, 2009), paper FQ3.
  15. A. P. T. Lau, T. S. R. Shen, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100 Gb/s transmission and beyond with coherent detection,” Opt. Express 18(16), 17239–17251 (2010).
    [CrossRef] [PubMed]
  16. K. P. Ho, A. P. T. Lau, and W. Shieh, “Equalization-enhanced phase noise induced timing jitter,” Opt. Lett. 36(4), 585–587 (2011).
    [CrossRef] [PubMed]
  17. C. Xie, “Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT4.
  18. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009).
    [CrossRef] [PubMed]
  19. I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express 18(15), 16273–16278 (2010).
    [CrossRef] [PubMed]
  20. S. Oda, C. Ohshima, T. Tanaka, T. Tanimura, H. Nakashima, N. Koizumi, T. Hoshida, H. Zhang, Z. Tao, and J. C. Rasmussen, “Interplay between Local oscillator phase noise and electrical chromatic dispersion compensation in digital coherent transmission system,” in Proceeding of IEEE European Conference on Optical Communication (Torino, Italy, 2010), paper Mo.1.C.2.
  21. T. Xu, G. Jacobsen, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Analytical estimation of phase noise influence in coherent transmission system with digital dispersion equalization,” Opt. Express 19(8), 7756–7768 (2011).
    [CrossRef] [PubMed]
  22. G. Jacobsen, M. S. Lidón, T. Xu, S. Popov, A. T. Friberg, and Y. Zhang, “Influence of pre- and post-compensation of CD on EEPN in coherent multilevel systems,” J. Opt. Commun. 32, 257–261 (2012).
  23. M. Nakamura, Y. Kamio, and T. Miyazaki, “Pilot-carrier based linewidth-tolerant 8PSK self-homodyne using only one modulator,” in Proceeding of IEEE European Conference on Optical Communication (Berlin, Germany, 2007), paper 8.3.6.
  24. M. Nakamura, Y. Kamio, and T. Miyazaki, “Linewidth-tolerant 10-Gbit/s 16-QAM transmission using a pilot-carrier based phase-noise cancelling technique,” Opt. Express 16(14), 10611–10616 (2008).
    [CrossRef] [PubMed]
  25. G. Jacobsen, T. Xu, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Receiver implemented RF pilot tone phase noise mitigation in coherent optical nPSK and nQAM systems,” Opt. Express 19(15), 14487–14494 (2011).
    [CrossRef] [PubMed]
  26. www.vpiphotonics.com
  27. Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, “Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent receiver,” Opt. Express 17(3), 1435–1441 (2009).
    [CrossRef] [PubMed]
  28. S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSFM enabled by RF-pilot tone for phase noise compensation”, in Proceeding of Conference on Optical Fiber Communications, (Anaheim, California, 2007), paper PDP 15.
  29. G. Jacobsen, “Laser phase noise induced error rate floors in differential n-level phase-shift-keying coherent receivers,” Electron. Lett. 46(10), 698–700 (2010).
    [CrossRef]

2012 (1)

G. Jacobsen, M. S. Lidón, T. Xu, S. Popov, A. T. Friberg, and Y. Zhang, “Influence of pre- and post-compensation of CD on EEPN in coherent multilevel systems,” J. Opt. Commun. 32, 257–261 (2012).

2011 (3)

2010 (4)

2009 (2)

2008 (3)

2007 (1)

2004 (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

1985 (1)

P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. 21(12), 1862–1879 (1985).
[CrossRef]

Bayvel, P.

Fatadin, I.

Friberg, A. T.

Gavioli, G.

Henry, P. S.

P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. 21(12), 1862–1879 (1985).
[CrossRef]

Ho, K. P.

Igarashi, K.

Jacobsen, G.

Kamio, Y.

Katoh, K.

Kikuchi, K.

Killey, R. I.

Lau, A. P. T.

Li, J.

Lidón, M. S.

G. Jacobsen, M. S. Lidón, T. Xu, S. Popov, A. T. Friberg, and Y. Zhang, “Influence of pre- and post-compensation of CD on EEPN in coherent multilevel systems,” J. Opt. Commun. 32, 257–261 (2012).

Miyazaki, T.

Mori, Y.

Nakamura, M.

Popov, S.

Savory, S. J.

Shen, T. S. R.

Shieh, W.

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

Vanin, E.

Wang, K.

Xie, C.

Xu, T.

Zhang, C.

Zhang, Y.

Electron. Lett. (1)

G. Jacobsen, “Laser phase noise induced error rate floors in differential n-level phase-shift-keying coherent receivers,” Electron. Lett. 46(10), 698–700 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. 21(12), 1862–1879 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

J. Opt. Commun. (1)

G. Jacobsen, M. S. Lidón, T. Xu, S. Popov, A. T. Friberg, and Y. Zhang, “Influence of pre- and post-compensation of CD on EEPN in coherent multilevel systems,” J. Opt. Commun. 32, 257–261 (2012).

Opt. Express (11)

C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009).
[CrossRef] [PubMed]

I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express 18(15), 16273–16278 (2010).
[CrossRef] [PubMed]

T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
[CrossRef] [PubMed]

W. Shieh and K. P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express 16(20), 15718–15727 (2008).
[CrossRef] [PubMed]

A. P. T. Lau, T. S. R. Shen, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100 Gb/s transmission and beyond with coherent detection,” Opt. Express 18(16), 17239–17251 (2010).
[CrossRef] [PubMed]

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[CrossRef] [PubMed]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[CrossRef] [PubMed]

T. Xu, G. Jacobsen, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Analytical estimation of phase noise influence in coherent transmission system with digital dispersion equalization,” Opt. Express 19(8), 7756–7768 (2011).
[CrossRef] [PubMed]

M. Nakamura, Y. Kamio, and T. Miyazaki, “Linewidth-tolerant 10-Gbit/s 16-QAM transmission using a pilot-carrier based phase-noise cancelling technique,” Opt. Express 16(14), 10611–10616 (2008).
[CrossRef] [PubMed]

G. Jacobsen, T. Xu, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Receiver implemented RF pilot tone phase noise mitigation in coherent optical nPSK and nQAM systems,” Opt. Express 19(15), 14487–14494 (2011).
[CrossRef] [PubMed]

Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, “Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent receiver,” Opt. Express 17(3), 1435–1441 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (13)

C. Xie, “Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT4.

A. P. T. Lau, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100Gb/s transmission with coherent detection,” in Proceedings of OptoElectronics and Communications Conference (Hong Kong, 2009), paper FQ3.

S. Oda, C. Ohshima, T. Tanaka, T. Tanimura, H. Nakashima, N. Koizumi, T. Hoshida, H. Zhang, Z. Tao, and J. C. Rasmussen, “Interplay between Local oscillator phase noise and electrical chromatic dispersion compensation in digital coherent transmission system,” in Proceeding of IEEE European Conference on Optical Communication (Torino, Italy, 2010), paper Mo.1.C.2.

M. Nakamura, Y. Kamio, and T. Miyazaki, “Pilot-carrier based linewidth-tolerant 8PSK self-homodyne using only one modulator,” in Proceeding of IEEE European Conference on Optical Communication (Berlin, Germany, 2007), paper 8.3.6.

S. J. Savory, “Compensation of fibre impairments in digital coherent systems,” in Proceeding of IEEE European Conference on Optical Communication (Brussels, Belgium, 2008), paper Mo.3.D.1.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” in Proceeding of IEEE European Conference on Optical Communication (Brussels, Belgium, 2008), paper We.2.E.3.

M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, A. Napoli, and B. Lankl, “Adaptive chromatic dispersion equalization for non-dispersion managed coherent systems,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT1.

R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, E. Yamada, H. Masuda, Y. Miyamoto, and M. Mizoguchi, “Two-stage overlap frequency domain equalization for long-haul optical systems,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT3.

A. Färbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J. P. Elbers, H. Wernz, H. Griesser, and C. Glingener, “Performance of a 10.7 Gb/s Receiver with digital equaliser using maximum likelihood sequence estimation,” in Proceeding of IEEE European Conference on Optical Communication (Stockholm, Sweden, 2004), paper Th4.1.5.

G. P. Agrawal, Fiber-optic communication systems, 3rd ed. (John Wiley & Sons, Inc., 2002), Chap. 2.

J. G. Proakis, Digital Communications 5th ed. (McGraw-Hill Companies, Inc., 2008), Chap.10.

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSFM enabled by RF-pilot tone for phase noise compensation”, in Proceeding of Conference on Optical Fiber Communications, (Anaheim, California, 2007), paper PDP 15.

www.vpiphotonics.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Block diagram for single polarization nPSK/nQAM system using an optical RF pilot tone for phase noise correction (including red system parts). The chromatic dispersion (CD) equalization (indicated in green system blocks) takes place either before (case (a)) or after (case (b)) the conjugate multiplication. The green arrow indicated by LMS shows that the LMS filter tap weights are determined by the QPSK time signal and that the filtering of the RF tone path uses the same tap weights. N(t) shows the added optical noise which is used to measure the bit error rate (BER) as a function of optical signal-to-noise ratio (OSNR). Figure abbreviations: Tx – transmitter; PBS – polarizing beam splitter; RF – radio frequency; PRBS – pseudo random bit sequence ; LO – local oscillator; ADC – analogue to digital conversion; CD – chromatic dispersion.

Fig. 2
Fig. 2

BER for single polarization QPSK coherent system of Fig. 1 when the phase noise compensation is omitted. Results are for transmission distance of 2000 km. The 3 different intrinsic linewidth cases discussed in section 3 are indicated in the figure for the FDE and LMS CD equalization filters. The PRBS length is 216-1. Figure abbreviations: OSNR - optical signal-to-noise ratio; Rx – receiver.

Fig. 3
Fig. 3

BER for single polarization QPSK coherent system of Fig. 1 when an adaptive LMS filter is used for CD equalization. Figure 3(a) is for CD equalization prior to phase noise compensation and Fig. 3(b) is for CD equalization after phase noise compensation. Results are for a transmission distance of 2000 km. The 3 different intrinsic linewidth cases discussed in section 3 are indicated in the figure. The PRBS length is 216-1. Figure abbreviations: OSNR - optical signal-to-noise ratio; Rx – receiver.

Fig. 4
Fig. 4

BER for single polarization QPSK coherent system of Fig. 1 when a fixed FDE filter is used for CD equalization. Figure 3(a) is for CD equalization prior to phase noise compensation and Fig. 3(b) is for CD equalization after phase noise compensation. Results are for a transmission distance of 2000 km. The 3 different intrinsic linewidth cases discussed in section 3 are indicated in the figure. The PRBS length is 216-1. Figure abbreviations: OSNR - optical signal-to-noise ratio; Rx – receiver.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E s (t)=A(t)exp( j( ϕ Tx (t)+ ϕ LO (t)+m(t) ) )
E RF (t)=Bexp(j( ϕ Tx (t)+ ϕ LO (t)))
E s (t) E RF * ( t )=BA(t)exp(jm(t))
σ EEPN 2 = π λ 2 2c DLΔ f A T S 2πΔ f EE T s
Δ f Eff σ Tx 2 + σ LO 2 + σ EEPN 2 2π T S σ Eff 2 2π T s =Δ f Tx +Δ f LO +Δ f EE
BE R floor NLMS 1 log 2 n erfc( π n 2 σ Eff )

Metrics