Abstract

Traditional optical projection tomography (OPT) acquires a single image at each rotation angle, thereby suffering from limitations in CCD dynamic range; this conventional usage cannot resolve features in samples with highly heterogeneous absorption, such as in small animals with organs of varying size. We present a novel technique, applying multiple-exposure high dynamic range (HDR) imaging to OPT, and demonstrate its ability to resolve fine details in zebrafish embryos, without complicated chemical clearing. We implement the tomographic reconstruction algorithm on the GPU, yielding a performance increase of two orders of magnitude. These features give our method potential application in high-throughput, high-resolution in vivo 3D imaging.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol. 51, R29–R43 (2006).
    [CrossRef] [PubMed]
  2. D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129,7661–7665 (2007).
    [CrossRef] [PubMed]
  3. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
    [CrossRef] [PubMed]
  4. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
    [CrossRef] [PubMed]
  5. T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Meth. 4, 31–33 (2006).
    [CrossRef]
  6. M. J. Boot, C. H. Westerberg, J. Sanz-Ezquerro, J. Cotterell, R. Schweitzer, M. Torres, and J. Sharpe, “In vitro whole-organ imaging: 4D quantification of growing mouse limb buds,” Nat. Meth. 5, 609–612 (2008).
    [CrossRef]
  7. C. Vinegoni, L. Fexon, P. F. Feruglio, M. Pivovarov, J. L. Figueiredo, M. Nahrendorf, A. Pozzo, A. Sbarbati, and R. Weissleder, “High throughput transmission optical projection tomography using low cost graphics processing unit,” Opt. Express 17, 22320–22332 (2009).
    [CrossRef]
  8. M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” Plos One 6(4), e18963 (2011).
    [CrossRef] [PubMed]
  9. B. B. Kirby, N. Takada, A. J. Latimer, J. Shin, T. J. Carney, R. N. Kelsh, and B. Appel, “In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development,” Nat. Neurosci. 9, 1506–1511 (2006).
    [CrossRef] [PubMed]
  10. Y. Gong, C. H. Mo, and S. E. Fraser, “Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation,” Nature 430, 689–693 (2004).
    [CrossRef] [PubMed]
  11. B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
    [CrossRef] [PubMed]
  12. A. F. Siekmann and N. D. Lawson, “Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries,” Nature 445, 781–784 (2007).
    [CrossRef] [PubMed]
  13. C. Jopling, E. Sleep, M. Raya, M. Marti, A. Raya, and J. C. I. Belmonte, “Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation,” Nature 464, 606–609 (2010).
    [CrossRef] [PubMed]
  14. P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction.” Nature 453, 499–503 (2008).
    [CrossRef] [PubMed]
  15. P. J. Lu, P. A. Sims, H. Oki, J. B. Macarthur, and D. A. Weitz, “Target-locking acquisition with real-time confocal (TARC) microscopy,” Opt. Express 15, 8702–8712 (2007).
    [CrossRef] [PubMed]
  16. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2008).
    [CrossRef]
  17. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
    [CrossRef]
  18. A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt. 16, 100502 (2011).
    [CrossRef] [PubMed]
  19. J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express 2, 1340–1350 (2011).
    [CrossRef] [PubMed]
  20. R. J. Bryson-Richardson and P. D. Currie, “Optical projection tomography for spatio-temporal analysis in the zebrafish,” in Methods in Cell BiologyM. W. H. William Detrich and I. Z. Leonard, eds. (Academic, 2004), pp. 37–50.
    [CrossRef] [PubMed]
  21. E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting (Morgan Kaufmann, 2005).
  22. C. Bloch, The HDRI Handbook: High Dynamic Range Imaging for Photographers and CG Artists (Rocky Nook, 2007).

2011 (3)

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” Plos One 6(4), e18963 (2011).
[CrossRef] [PubMed]

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt. 16, 100502 (2011).
[CrossRef] [PubMed]

J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express 2, 1340–1350 (2011).
[CrossRef] [PubMed]

2010 (1)

C. Jopling, E. Sleep, M. Raya, M. Marti, A. Raya, and J. C. I. Belmonte, “Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation,” Nature 464, 606–609 (2010).
[CrossRef] [PubMed]

2009 (2)

C. Vinegoni, L. Fexon, P. F. Feruglio, M. Pivovarov, J. L. Figueiredo, M. Nahrendorf, A. Pozzo, A. Sbarbati, and R. Weissleder, “High throughput transmission optical projection tomography using low cost graphics processing unit,” Opt. Express 17, 22320–22332 (2009).
[CrossRef]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

2008 (3)

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction.” Nature 453, 499–503 (2008).
[CrossRef] [PubMed]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2008).
[CrossRef]

M. J. Boot, C. H. Westerberg, J. Sanz-Ezquerro, J. Cotterell, R. Schweitzer, M. Torres, and J. Sharpe, “In vitro whole-organ imaging: 4D quantification of growing mouse limb buds,” Nat. Meth. 5, 609–612 (2008).
[CrossRef]

2007 (3)

D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129,7661–7665 (2007).
[CrossRef] [PubMed]

A. F. Siekmann and N. D. Lawson, “Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries,” Nature 445, 781–784 (2007).
[CrossRef] [PubMed]

P. J. Lu, P. A. Sims, H. Oki, J. B. Macarthur, and D. A. Weitz, “Target-locking acquisition with real-time confocal (TARC) microscopy,” Opt. Express 15, 8702–8712 (2007).
[CrossRef] [PubMed]

2006 (4)

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol. 51, R29–R43 (2006).
[CrossRef] [PubMed]

T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Meth. 4, 31–33 (2006).
[CrossRef]

B. B. Kirby, N. Takada, A. J. Latimer, J. Shin, T. J. Carney, R. N. Kelsh, and B. Appel, “In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development,” Nat. Neurosci. 9, 1506–1511 (2006).
[CrossRef] [PubMed]

2004 (1)

Y. Gong, C. H. Mo, and S. E. Fraser, “Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation,” Nature 430, 689–693 (2004).
[CrossRef] [PubMed]

2002 (1)

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

1996 (1)

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[CrossRef] [PubMed]

Ahlgren, U.

T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Meth. 4, 31–33 (2006).
[CrossRef]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Alanentalo, T.

T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Meth. 4, 31–33 (2006).
[CrossRef]

Appel, B.

B. B. Kirby, N. Takada, A. J. Latimer, J. Shin, T. J. Carney, R. N. Kelsh, and B. Appel, “In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development,” Nat. Neurosci. 9, 1506–1511 (2006).
[CrossRef] [PubMed]

Asai, J.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Asayesh, A.

T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Meth. 4, 31–33 (2006).
[CrossRef]

Baldock, R.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Bassi, A.

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt. 16, 100502 (2011).
[CrossRef] [PubMed]

Belmonte, J. C. I.

C. Jopling, E. Sleep, M. Raya, M. Marti, A. Raya, and J. C. I. Belmonte, “Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation,” Nature 464, 606–609 (2010).
[CrossRef] [PubMed]

Birk, U. J.

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” Plos One 6(4), e18963 (2011).
[CrossRef] [PubMed]

Bloch, C.

C. Bloch, The HDRI Handbook: High Dynamic Range Imaging for Photographers and CG Artists (Rocky Nook, 2007).

Boot, M. J.

M. J. Boot, C. H. Westerberg, J. Sanz-Ezquerro, J. Cotterell, R. Schweitzer, M. Torres, and J. Sharpe, “In vitro whole-organ imaging: 4D quantification of growing mouse limb buds,” Nat. Meth. 5, 609–612 (2008).
[CrossRef]

Bryson-Richardson, R. J.

R. J. Bryson-Richardson and P. D. Currie, “Optical projection tomography for spatio-temporal analysis in the zebrafish,” in Methods in Cell BiologyM. W. H. William Detrich and I. Z. Leonard, eds. (Academic, 2004), pp. 37–50.
[CrossRef] [PubMed]

Bugeon, L.

Carney, T. J.

B. B. Kirby, N. Takada, A. J. Latimer, J. Shin, T. J. Carney, R. N. Kelsh, and B. Appel, “In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development,” Nat. Neurosci. 9, 1506–1511 (2006).
[CrossRef] [PubMed]

Chen, L.

Chien, C. B.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Ciulla, F.

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction.” Nature 453, 499–503 (2008).
[CrossRef] [PubMed]

Cotterell, J.

M. J. Boot, C. H. Westerberg, J. Sanz-Ezquerro, J. Cotterell, R. Schweitzer, M. Torres, and J. Sharpe, “In vitro whole-organ imaging: 4D quantification of growing mouse limb buds,” Nat. Meth. 5, 609–612 (2008).
[CrossRef]

Currie, P. D.

R. J. Bryson-Richardson and P. D. Currie, “Optical projection tomography for spatio-temporal analysis in the zebrafish,” in Methods in Cell BiologyM. W. H. William Detrich and I. Z. Leonard, eds. (Academic, 2004), pp. 37–50.
[CrossRef] [PubMed]

D’Andrea, C.

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt. 16, 100502 (2011).
[CrossRef] [PubMed]

Dallman, M. J.

Davidson, D.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Debevec, P.

E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting (Morgan Kaufmann, 2005).

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

Feruglio, P. F.

Fexon, L.

Fieramonti, L.

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt. 16, 100502 (2011).
[CrossRef] [PubMed]

Figueiredo, J. L.

Fraser, S. E.

Y. Gong, C. H. Mo, and S. E. Fraser, “Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation,” Nature 430, 689–693 (2004).
[CrossRef] [PubMed]

French, P. M. W.

Gong, Y.

Y. Gong, C. H. Mo, and S. E. Fraser, “Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation,” Nature 430, 689–693 (2004).
[CrossRef] [PubMed]

Hecksher-Sorensen, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Hill, B.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Hirano, K.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[CrossRef] [PubMed]

Holmberg, D.

T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Meth. 4, 31–33 (2006).
[CrossRef]

Ii, M.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Itai, Y.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[CrossRef] [PubMed]

Jeong, Y. Y.

D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129,7661–7665 (2007).
[CrossRef] [PubMed]

Jon, S.

D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129,7661–7665 (2007).
[CrossRef] [PubMed]

Jopling, C.

C. Jopling, E. Sleep, M. Raya, M. Marti, A. Raya, and J. C. I. Belmonte, “Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation,” Nature 464, 606–609 (2010).
[CrossRef] [PubMed]

Kalender, W. A.

W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol. 51, R29–R43 (2006).
[CrossRef] [PubMed]

Kelsh, R. N.

B. B. Kirby, N. Takada, A. J. Latimer, J. Shin, T. J. Carney, R. N. Kelsh, and B. Appel, “In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development,” Nat. Neurosci. 9, 1506–1511 (2006).
[CrossRef] [PubMed]

Kim, D.

D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129,7661–7665 (2007).
[CrossRef] [PubMed]

Kirby, B. B.

B. B. Kirby, N. Takada, A. J. Latimer, J. Shin, T. J. Carney, R. N. Kelsh, and B. Appel, “In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development,” Nat. Neurosci. 9, 1506–1511 (2006).
[CrossRef] [PubMed]

Kock, G. A. H.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Koster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

Lamb, J. R.

Larrieu-Lahargue, F.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Latimer, A. J.

B. B. Kirby, N. Takada, A. J. Latimer, J. Shin, T. J. Carney, R. N. Kelsh, and B. Appel, “In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development,” Nat. Neurosci. 9, 1506–1511 (2006).
[CrossRef] [PubMed]

Lawson, N. D.

A. F. Siekmann and N. D. Lawson, “Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries,” Nature 445, 781–784 (2007).
[CrossRef] [PubMed]

Lee, J. H.

D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129,7661–7665 (2007).
[CrossRef] [PubMed]

Li, D. Y.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Lorén, C. E.

T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Meth. 4, 31–33 (2006).
[CrossRef]

Losordo, D. W.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Lu, P. J.

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction.” Nature 453, 499–503 (2008).
[CrossRef] [PubMed]

P. J. Lu, P. A. Sims, H. Oki, J. B. Macarthur, and D. A. Weitz, “Target-locking acquisition with real-time confocal (TARC) microscopy,” Opt. Express 15, 8702–8712 (2007).
[CrossRef] [PubMed]

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

Macarthur, J. B.

Marti, M.

C. Jopling, E. Sleep, M. Raya, M. Marti, A. Raya, and J. C. I. Belmonte, “Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation,” Nature 464, 606–609 (2010).
[CrossRef] [PubMed]

McGinty, J.

Meyer, H.

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” Plos One 6(4), e18963 (2011).
[CrossRef] [PubMed]

Mione, M.

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt. 16, 100502 (2011).
[CrossRef] [PubMed]

Mo, C. H.

Y. Gong, C. H. Mo, and S. E. Fraser, “Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation,” Nature 430, 689–693 (2004).
[CrossRef] [PubMed]

Momose, A.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[CrossRef] [PubMed]

Morrison, H.

T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Meth. 4, 31–33 (2006).
[CrossRef]

Myszkowski, K.

E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting (Morgan Kaufmann, 2005).

Nahrendorf, M.

Ntziachristos, V.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2008).
[CrossRef]

Oki, H.

Park, K. W.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Park, S.

D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129,7661–7665 (2007).
[CrossRef] [PubMed]

Pattanaik, S.

E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting (Morgan Kaufmann, 2005).

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2008).
[CrossRef]

Perry, P.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Pitsouli, C.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2008).
[CrossRef]

Pivovarov, M.

Pozzo, A.

Raya, A.

C. Jopling, E. Sleep, M. Raya, M. Marti, A. Raya, and J. C. I. Belmonte, “Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation,” Nature 464, 606–609 (2010).
[CrossRef] [PubMed]

Raya, M.

C. Jopling, E. Sleep, M. Raya, M. Marti, A. Raya, and J. C. I. Belmonte, “Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation,” Nature 464, 606–609 (2010).
[CrossRef] [PubMed]

Razansky, D.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2008).
[CrossRef]

Reinhard, E.

E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting (Morgan Kaufmann, 2005).

Rieckher, M.

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” Plos One 6(4), e18963 (2011).
[CrossRef] [PubMed]

Ripoll, J.

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” Plos One 6(4), e18963 (2011).
[CrossRef] [PubMed]

Ross, A.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Sanz-Ezquerro, J.

M. J. Boot, C. H. Westerberg, J. Sanz-Ezquerro, J. Cotterell, R. Schweitzer, M. Torres, and J. Sharpe, “In vitro whole-organ imaging: 4D quantification of growing mouse limb buds,” Nat. Meth. 5, 609–612 (2008).
[CrossRef]

Sbarbati, A.

Schofield, A. B.

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction.” Nature 453, 499–503 (2008).
[CrossRef] [PubMed]

Schweitzer, R.

M. J. Boot, C. H. Westerberg, J. Sanz-Ezquerro, J. Cotterell, R. Schweitzer, M. Torres, and J. Sharpe, “In vitro whole-organ imaging: 4D quantification of growing mouse limb buds,” Nat. Meth. 5, 609–612 (2008).
[CrossRef]

Sciortino, F.

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction.” Nature 453, 499–503 (2008).
[CrossRef] [PubMed]

Sharpe, J.

M. J. Boot, C. H. Westerberg, J. Sanz-Ezquerro, J. Cotterell, R. Schweitzer, M. Torres, and J. Sharpe, “In vitro whole-organ imaging: 4D quantification of growing mouse limb buds,” Nat. Meth. 5, 609–612 (2008).
[CrossRef]

T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Meth. 4, 31–33 (2006).
[CrossRef]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Shin, J.

B. B. Kirby, N. Takada, A. J. Latimer, J. Shin, T. J. Carney, R. N. Kelsh, and B. Appel, “In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development,” Nat. Neurosci. 9, 1506–1511 (2006).
[CrossRef] [PubMed]

Siekmann, A. F.

A. F. Siekmann and N. D. Lawson, “Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries,” Nature 445, 781–784 (2007).
[CrossRef] [PubMed]

Silver, M.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Sims, P. A.

Sleep, E.

C. Jopling, E. Sleep, M. Raya, M. Marti, A. Raya, and J. C. I. Belmonte, “Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation,” Nature 464, 606–609 (2010).
[CrossRef] [PubMed]

Sorensen, L. K.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Suh, W.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Suli, A.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Takada, N.

B. B. Kirby, N. Takada, A. J. Latimer, J. Shin, T. J. Carney, R. N. Kelsh, and B. Appel, “In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development,” Nat. Neurosci. 9, 1506–1511 (2006).
[CrossRef] [PubMed]

Takeda, T.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[CrossRef] [PubMed]

Tavernarakis, N.

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” Plos One 6(4), e18963 (2011).
[CrossRef] [PubMed]

Taylor, H. B.

Thomas, K. R.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Thorne, T.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Torres, M.

M. J. Boot, C. H. Westerberg, J. Sanz-Ezquerro, J. Cotterell, R. Schweitzer, M. Torres, and J. Sharpe, “In vitro whole-organ imaging: 4D quantification of growing mouse limb buds,” Nat. Meth. 5, 609–612 (2008).
[CrossRef]

Urness, L. D.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Valentini, G.

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt. 16, 100502 (2011).
[CrossRef] [PubMed]

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

C. Vinegoni, L. Fexon, P. F. Feruglio, M. Pivovarov, J. L. Figueiredo, M. Nahrendorf, A. Pozzo, A. Sbarbati, and R. Weissleder, “High throughput transmission optical projection tomography using low cost graphics processing unit,” Opt. Express 17, 22320–22332 (2009).
[CrossRef]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2008).
[CrossRef]

Ward, G.

E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting (Morgan Kaufmann, 2005).

E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting (Morgan Kaufmann, 2005).

Weissleder, R.

Weitz, D. A.

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction.” Nature 453, 499–503 (2008).
[CrossRef] [PubMed]

P. J. Lu, P. A. Sims, H. Oki, J. B. Macarthur, and D. A. Weitz, “Target-locking acquisition with real-time confocal (TARC) microscopy,” Opt. Express 15, 8702–8712 (2007).
[CrossRef] [PubMed]

Westerberg, C. H.

M. J. Boot, C. H. Westerberg, J. Sanz-Ezquerro, J. Cotterell, R. Schweitzer, M. Torres, and J. Sharpe, “In vitro whole-organ imaging: 4D quantification of growing mouse limb buds,” Nat. Meth. 5, 609–612 (2008).
[CrossRef]

Wilson, B. D.

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

Zaccarelli, E.

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction.” Nature 453, 499–503 (2008).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

J. Am. Chem. Soc. (1)

D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129,7661–7665 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt. 16, 100502 (2011).
[CrossRef] [PubMed]

Nat. Med. (1)

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[CrossRef] [PubMed]

Nat. Meth. (2)

T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Meth. 4, 31–33 (2006).
[CrossRef]

M. J. Boot, C. H. Westerberg, J. Sanz-Ezquerro, J. Cotterell, R. Schweitzer, M. Torres, and J. Sharpe, “In vitro whole-organ imaging: 4D quantification of growing mouse limb buds,” Nat. Meth. 5, 609–612 (2008).
[CrossRef]

Nat. Methods (1)

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2008).
[CrossRef]

Nat. Neurosci. (1)

B. B. Kirby, N. Takada, A. J. Latimer, J. Shin, T. J. Carney, R. N. Kelsh, and B. Appel, “In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development,” Nat. Neurosci. 9, 1506–1511 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3, 412–417 (2009).
[CrossRef]

Nature (4)

A. F. Siekmann and N. D. Lawson, “Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries,” Nature 445, 781–784 (2007).
[CrossRef] [PubMed]

C. Jopling, E. Sleep, M. Raya, M. Marti, A. Raya, and J. C. I. Belmonte, “Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation,” Nature 464, 606–609 (2010).
[CrossRef] [PubMed]

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction.” Nature 453, 499–503 (2008).
[CrossRef] [PubMed]

Y. Gong, C. H. Mo, and S. E. Fraser, “Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation,” Nature 430, 689–693 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Med. Biol. (1)

W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol. 51, R29–R43 (2006).
[CrossRef] [PubMed]

Plos One (1)

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” Plos One 6(4), e18963 (2011).
[CrossRef] [PubMed]

Science (2)

B. D. Wilson, M. Ii, K. W. Park, A. Suli, L. K. Sorensen, F. Larrieu-Lahargue, L. D. Urness, W. Suh, J. Asai, G. A. H. Kock, T. Thorne, M. Silver, K. R. Thomas, C. B. Chien, D. W. Losordo, and D. Y. Li, “Netrins promote developmental and therapeutic angiogenesis,” Science 313, 640–644 (2006).
[CrossRef] [PubMed]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef] [PubMed]

Other (3)

R. J. Bryson-Richardson and P. D. Currie, “Optical projection tomography for spatio-temporal analysis in the zebrafish,” in Methods in Cell BiologyM. W. H. William Detrich and I. Z. Leonard, eds. (Academic, 2004), pp. 37–50.
[CrossRef] [PubMed]

E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, G. Ward, and K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting (Morgan Kaufmann, 2005).

C. Bloch, The HDRI Handbook: High Dynamic Range Imaging for Photographers and CG Artists (Rocky Nook, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic and experimental setup for optical projection tomography (OPT) with high dynamic range (HDR) imaging. (a) Standard OPT setup, with rotating sample imaged over a range of angles. (b) Sample staining affects overall transparency, with far more opaque heads when zebrafish are vessel-stained (top left), as compared with cartilage-stained (top right). Even after BABB clearing (lower left), regions of the zebrafish head remain opaque, and require longer exposure times to be visualized (lower right), at which point the more transparent portions of the zebrafish are no longer visible in the image. The limitations in dynamic range of standard CCDs therefore preclude properly-exposed visualization of all parts of the zebrafish with a single exposure. (c) HDR-OPT imaging spans the same angular range as traditional OPT, but at each angle, several images are collected with different exposure settings. (d) Our experimental setup for HDR-OPT is the same as a traditional OPT setup, with camera, 2X telecentric lens, LED illuminator, rotating sample stage and agarose gel sample holder.

Fig. 2
Fig. 2

HDR imaging workflow. (a) Images at different angles (vertical axis) shown for different exposure times (horizontal axis). (b) at each angle, we combine images with different exposures to yield a single HDR image.

Fig. 3
Fig. 3

Transfer functions affect 3D visualization of a embryonic vessels by alkinine phosphatase staining of zebrafish embryos at 3 dpf. (a) HDR transfer functions and (b) areas from which orthographic projections are taken to generate the series of corresponding images in (c). (d) Applying the transfer functions selectively highlights arteries, veins and intersegment vessel structures in the zebrafish (iii–v) relative to either the original linear transfer function (i) or a function with a sigmoid shape (ii).

Fig. 4
Fig. 4

Comparison of conventional OPT with and without BABB clearing, with HDR-OPT reconstruction of embryonic vessels by alkinine phosphatase staining of zebrafish embryos at 3 dpf, which demonstrates higher resolution and contrast. We show 5 typical orthographic projection planes inside the embryo body in (b): tail (coronal plane 1 and transverse plane 2), posterior and trunk parts (sagittal plane 3), mutant embryo heart (plane 4), and head part (coronal plane 5). Traditional OPT-reconstructed images without clearing show some features in some planes, but never all features in all planes, due to vast differences in opacity in the original sample. Clearing with BABB somewhat improves contrast, but the heart is still a relatively featureless blur deep inside the fish (plane 5). By contrast, in the HDR-OPT reconstruction, structures in all planes are visible, clear and more finely resolved, including intersegmental vessels (ISVs), vertebral arteries (VTAs), pharyngeal arch area, notochord and veins. Particularly in the anterior part of the embryo with highest opacity, our HDR-based approach restores far more detail than conventional OPT, even with BABB clearing.

Fig. 5
Fig. 5

3D rendering of the 3 dpf zebrafish embryo. (a) 3D visualizations of the embryo reconstructed using conventional OPT over a range of exposures, and HDR-OPT. Red, green and blue regions respectively highlight details of the embryonic trunk and posterior, including the ventral artery and ISVs. (b) Sagittal and coronal sections of the anterior part of the embryo with different thickness (∼10 μm and ∼100 μm, respectively) and viewing angle. In all cases, only the HDR-OPT reconstruction shows all features clearly in all images.

Fig. 6
Fig. 6

Reconstruction of wild-type and scotch-tape zebrafish embryos using conventional OPT and HDR OPT. HDR-OPT provides significantly better contrast and creates higher-definition volumes to better discern features in detail between wild type and scotch tape fishes. The dorsal aorta (DA, green arrow) and posterior cardinal vein (PCV, red arrow) from both transversal and sagittal views are targeted for comparison. HDR-OPT clearly generates more clear edges of vessel patterns than conventional OPT, which demonstrates that, relative to the wild-type, scotch-tape zebrafish has narrow, irregular artery shapes.

Tables (2)

Tables Icon

Table 1 Comparison of Absolute Reconstruction Times between GPUs and CPU

Tables Icon

Table 2 Comparison of Relative Reconstruction Speed between GPUs and CPU

Metrics