Abstract

This paper presents results from a pulsed-laser cavity ring-down spectrometer with novel field programable gate array real-time data collection. We show both theoretically and experimentally that the data extraction can be achieved from a single cavity ringdown event, and that the absorbance can be determined without the need to fit the ringdown time explicitly. This methodology could potentially provide data acquisition rate up to 1MHz, with the accuracy and precision comparable to nonlinear least squares fitting algorithms.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique ACS Symp. Ser. 720, American Chemical Society, Washington, DC, 1999.
    [CrossRef]
  2. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and application,” Int. Rev. in Phys. Chem. 19(4), 565–607 (2000).
    [CrossRef]
  3. D. Z. Anderson, J. C. Frisch, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23(8), 1238–1245 (1984).
    [CrossRef] [PubMed]
  4. D. Z. Anderson, “Reflectometer based on optical cavity decay time,” US Patent Office US4571085 (1986).
  5. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  6. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
    [CrossRef]
  7. N. J. van Leeuwen, J. C. Diettrich, and A. C. Wilson, “Periodically locked continuous-wave cavity ringdown spectroscopy,” Appl. Opt. 42(18), 3670–3677 (2003).
    [CrossRef] [PubMed]
  8. M. A. Everest and D. B. Atkinson, “Discrete sums for the rapid determination of exponential decay constants,” Rev. Sci. Instrum. 79, 023108 (2008).
    [CrossRef] [PubMed]
  9. P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and C. C. Harb, “Quantum cascade laser-based substance detection: approaching the quantum noise limited,” in Next-Generation Spectroscopic Technologies IV, M. A. Druy and R. A. Crocombe, Eds., Proc. SPIE 8032, 80320C (2011).
  10. K. K. Lehmann and H. Huang, “Optimal signal processing in cavity ring-down spectroscopy,” Frontiers of Molecular Spectroscopy, J. Laane, ed. (Elsevier2009) pp. 623–658.
    [CrossRef]
  11. D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
    [CrossRef] [PubMed]
  12. T. K. Boyson, T. G. Spence, M. E. Calzada, and C. C. Harb, “Frequency domain analysis method for cavity ring-down spectroscopy,” Opt. Express 19, 8092–8101 (2011).
    [CrossRef] [PubMed]
  13. M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B. 81, 135–141 (2005).
    [CrossRef]
  14. A. C. Vandaele, C. Hermans, P. C. Simon, M. Van Roozendael, J. M Guilmot, M. Carleer, and R. Colin “Fourier transform measurement of NO2 absorption cross-sections in the visible range at room temperature,” J. Atm. Chem. 25, 289–305 (1996).
    [CrossRef]

2011

2009

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

2008

M. A. Everest and D. B. Atkinson, “Discrete sums for the rapid determination of exponential decay constants,” Rev. Sci. Instrum. 79, 023108 (2008).
[CrossRef] [PubMed]

2005

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B. 81, 135–141 (2005).
[CrossRef]

2003

2000

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and application,” Int. Rev. in Phys. Chem. 19(4), 565–607 (2000).
[CrossRef]

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

1996

A. C. Vandaele, C. Hermans, P. C. Simon, M. Van Roozendael, J. M Guilmot, M. Carleer, and R. Colin “Fourier transform measurement of NO2 absorption cross-sections in the visible range at room temperature,” J. Atm. Chem. 25, 289–305 (1996).
[CrossRef]

1988

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1984

Allen, N. T.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Anderson, D. Z.

Anderson, J. G.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Atkinson, D. B.

M. A. Everest and D. B. Atkinson, “Discrete sums for the rapid determination of exponential decay constants,” Rev. Sci. Instrum. 79, 023108 (2008).
[CrossRef] [PubMed]

Beames, J. M.

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B. 81, 135–141 (2005).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and application,” Int. Rev. in Phys. Chem. 19(4), 565–607 (2000).
[CrossRef]

Boyson, T. K.

T. K. Boyson, T. G. Spence, M. E. Calzada, and C. C. Harb, “Frequency domain analysis method for cavity ring-down spectroscopy,” Opt. Express 19, 8092–8101 (2011).
[CrossRef] [PubMed]

P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and C. C. Harb, “Quantum cascade laser-based substance detection: approaching the quantum noise limited,” in Next-Generation Spectroscopic Technologies IV, M. A. Druy and R. A. Crocombe, Eds., Proc. SPIE 8032, 80320C (2011).

Busch, K. W.

K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique ACS Symp. Ser. 720, American Chemical Society, Washington, DC, 1999.
[CrossRef]

Busch, M. A.

K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique ACS Symp. Ser. 720, American Chemical Society, Washington, DC, 1999.
[CrossRef]

Butler, T. J. A.

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B. 81, 135–141 (2005).
[CrossRef]

Byer, R. L.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

Calzada, M. E.

T. K. Boyson, T. G. Spence, M. E. Calzada, and C. C. Harb, “Frequency domain analysis method for cavity ring-down spectroscopy,” Opt. Express 19, 8092–8101 (2011).
[CrossRef] [PubMed]

P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and C. C. Harb, “Quantum cascade laser-based substance detection: approaching the quantum noise limited,” in Next-Generation Spectroscopic Technologies IV, M. A. Druy and R. A. Crocombe, Eds., Proc. SPIE 8032, 80320C (2011).

Carleer, M.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Van Roozendael, J. M Guilmot, M. Carleer, and R. Colin “Fourier transform measurement of NO2 absorption cross-sections in the visible range at room temperature,” J. Atm. Chem. 25, 289–305 (1996).
[CrossRef]

Colin, R.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Van Roozendael, J. M Guilmot, M. Carleer, and R. Colin “Fourier transform measurement of NO2 absorption cross-sections in the visible range at room temperature,” J. Atm. Chem. 25, 289–305 (1996).
[CrossRef]

Conroy, K. J.

P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and C. C. Harb, “Quantum cascade laser-based substance detection: approaching the quantum noise limited,” in Next-Generation Spectroscopic Technologies IV, M. A. Druy and R. A. Crocombe, Eds., Proc. SPIE 8032, 80320C (2011).

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Demusz, J. N.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Diettrich, J. C.

Engel, G. S.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Everest, M. A.

M. A. Everest and D. B. Atkinson, “Discrete sums for the rapid determination of exponential decay constants,” Rev. Sci. Instrum. 79, 023108 (2008).
[CrossRef] [PubMed]

Frisch, J. C.

Greenberg, M.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Guilmot, J. M

A. C. Vandaele, C. Hermans, P. C. Simon, M. Van Roozendael, J. M Guilmot, M. Carleer, and R. Colin “Fourier transform measurement of NO2 absorption cross-sections in the visible range at room temperature,” J. Atm. Chem. 25, 289–305 (1996).
[CrossRef]

Hanisco, T. F.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Harb, C. C.

T. K. Boyson, T. G. Spence, M. E. Calzada, and C. C. Harb, “Frequency domain analysis method for cavity ring-down spectroscopy,” Opt. Express 19, 8092–8101 (2011).
[CrossRef] [PubMed]

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and C. C. Harb, “Quantum cascade laser-based substance detection: approaching the quantum noise limited,” in Next-Generation Spectroscopic Technologies IV, M. A. Druy and R. A. Crocombe, Eds., Proc. SPIE 8032, 80320C (2011).

Hermans, C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Van Roozendael, J. M Guilmot, M. Carleer, and R. Colin “Fourier transform measurement of NO2 absorption cross-sections in the visible range at room temperature,” J. Atm. Chem. 25, 289–305 (1996).
[CrossRef]

Huang, H.

K. K. Lehmann and H. Huang, “Optimal signal processing in cavity ring-down spectroscopy,” Frontiers of Molecular Spectroscopy, J. Laane, ed. (Elsevier2009) pp. 623–658.
[CrossRef]

Kallapur, A. G.

P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and C. C. Harb, “Quantum cascade laser-based substance detection: approaching the quantum noise limited,” in Next-Generation Spectroscopic Technologies IV, M. A. Druy and R. A. Crocombe, Eds., Proc. SPIE 8032, 80320C (2011).

Keutsch, F. N.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Kirkbride, K. P.

P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and C. C. Harb, “Quantum cascade laser-based substance detection: approaching the quantum noise limited,” in Next-Generation Spectroscopic Technologies IV, M. A. Druy and R. A. Crocombe, Eds., Proc. SPIE 8032, 80320C (2011).

Kroll, J. H.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Kuffner, P. C.

P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and C. C. Harb, “Quantum cascade laser-based substance detection: approaching the quantum noise limited,” in Next-Generation Spectroscopic Technologies IV, M. A. Druy and R. A. Crocombe, Eds., Proc. SPIE 8032, 80320C (2011).

Lapson, L.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Lehmann, K. K.

K. K. Lehmann and H. Huang, “Optimal signal processing in cavity ring-down spectroscopy,” Frontiers of Molecular Spectroscopy, J. Laane, ed. (Elsevier2009) pp. 623–658.
[CrossRef]

Martin, T.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Masser, C. S.

Mazurenka, M.

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B. 81, 135–141 (2005).
[CrossRef]

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and application,” Int. Rev. in Phys. Chem. 19(4), 565–607 (2000).
[CrossRef]

Milford, G.

P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and C. C. Harb, “Quantum cascade laser-based substance detection: approaching the quantum noise limited,” in Next-Generation Spectroscopic Technologies IV, M. A. Druy and R. A. Crocombe, Eds., Proc. SPIE 8032, 80320C (2011).

Moyer, E. J.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

O’Brien, A.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

O’Keefe, A.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Orr-Ewing, A. J.

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B. 81, 135–141 (2005).
[CrossRef]

Paldus, B. A.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

Paul, J. B.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and application,” Int. Rev. in Phys. Chem. 19(4), 565–607 (2000).
[CrossRef]

Petersen, I. R.

P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and C. C. Harb, “Quantum cascade laser-based substance detection: approaching the quantum noise limited,” in Next-Generation Spectroscopic Technologies IV, M. A. Druy and R. A. Crocombe, Eds., Proc. SPIE 8032, 80320C (2011).

Rivero, M.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Sayres, D. S.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Shillings, A. J. L.

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B. 81, 135–141 (2005).
[CrossRef]

Simon, P. C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Van Roozendael, J. M Guilmot, M. Carleer, and R. Colin “Fourier transform measurement of NO2 absorption cross-sections in the visible range at room temperature,” J. Atm. Chem. 25, 289–305 (1996).
[CrossRef]

Spence, T. G.

T. K. Boyson, T. G. Spence, M. E. Calzada, and C. C. Harb, “Frequency domain analysis method for cavity ring-down spectroscopy,” Opt. Express 19, 8092–8101 (2011).
[CrossRef] [PubMed]

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and C. C. Harb, “Quantum cascade laser-based substance detection: approaching the quantum noise limited,” in Next-Generation Spectroscopic Technologies IV, M. A. Druy and R. A. Crocombe, Eds., Proc. SPIE 8032, 80320C (2011).

St. Clair, J. M.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

Tuozzolo, C.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

van Leeuwen, N. J.

Van Roozendael, M.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Van Roozendael, J. M Guilmot, M. Carleer, and R. Colin “Fourier transform measurement of NO2 absorption cross-sections in the visible range at room temperature,” J. Atm. Chem. 25, 289–305 (1996).
[CrossRef]

Vandaele, A. C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Van Roozendael, J. M Guilmot, M. Carleer, and R. Colin “Fourier transform measurement of NO2 absorption cross-sections in the visible range at room temperature,” J. Atm. Chem. 25, 289–305 (1996).
[CrossRef]

Wada, R.

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B. 81, 135–141 (2005).
[CrossRef]

Willke, B.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

Wilson, A. C.

Zare, R. N.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. B.

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B. 81, 135–141 (2005).
[CrossRef]

Int. Rev. in Phys. Chem.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and application,” Int. Rev. in Phys. Chem. 19(4), 565–607 (2000).
[CrossRef]

J. Atm. Chem.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Van Roozendael, J. M Guilmot, M. Carleer, and R. Colin “Fourier transform measurement of NO2 absorption cross-sections in the visible range at room temperature,” J. Atm. Chem. 25, 289–305 (1996).
[CrossRef]

Opt. Express

Rev. Sci. Instrum.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St. Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum. 80, 044102 (2009).
[CrossRef] [PubMed]

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

M. A. Everest and D. B. Atkinson, “Discrete sums for the rapid determination of exponential decay constants,” Rev. Sci. Instrum. 79, 023108 (2008).
[CrossRef] [PubMed]

Other

P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and C. C. Harb, “Quantum cascade laser-based substance detection: approaching the quantum noise limited,” in Next-Generation Spectroscopic Technologies IV, M. A. Druy and R. A. Crocombe, Eds., Proc. SPIE 8032, 80320C (2011).

K. K. Lehmann and H. Huang, “Optimal signal processing in cavity ring-down spectroscopy,” Frontiers of Molecular Spectroscopy, J. Laane, ed. (Elsevier2009) pp. 623–658.
[CrossRef]

K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique ACS Symp. Ser. 720, American Chemical Society, Washington, DC, 1999.
[CrossRef]

D. Z. Anderson, “Reflectometer based on optical cavity decay time,” US Patent Office US4571085 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Single shot ringdown signal of a 10μs (blue) and a 0.1μs (red) signals acquired, in this case, over the time window w = 10μs. (b) time domain ringdown waveform of the two signals in (a) generated by transposing every other ring-down. (c) power spectrum of time domain signals in (b) showing a comb of characteristic frequency components whose intensities vary with τ. (d) the relationship between R and τ’.

Fig. 2
Fig. 2

Components of the pulsed dye laser spectrometer. It’s laser source had a 20Hz repetition rate and ≈ 10ns pulse width.

Fig. 3
Fig. 3

Relative error in τ as a function of the standard deviation of normally distributed white noise added to synthetic decay transients for the three characterization methods.

Fig. 4
Fig. 4

Relative standard deviation of τ as a function of the standard deviation of normally distributed white noise added to synthetic decay transients for the three characterization methods.

Fig. 5
Fig. 5

Optimal window length.

Fig. 6
Fig. 6

Block diagram of the FPGA program providing real-time analysis of exponentially decaying transients. The enable signal is triggered by the falling edge of a ring-down event, and remains enabled over the entire sampling window. While enabled, the FPGA acquires the signal, multiplies by the two cosine functions, accumulates the result in a sum and calculates the ratio in a point-by-point fashion. A pair of latches control data output so that the most recent completed R value is always present at the digital-to-analog output where it may be measured at the laser firing rate.

Fig. 7
Fig. 7

Real-time signals generated by the FPGA. These four traces are the ring-down signal acquired from the PMT (S) for a purged cavity under vacuum, the two cosine functions (C1, C2) and the ratio at the output of Latch 1, calculated/acquired in real time at rate of 100 MHz. C1, C2, and R are calculated over the data acquisition window, w.

Fig. 8
Fig. 8

(a) Absorption spectrum of NO2(g) in room air at 1.0 atm and 293 K obtained using FCA in real time. (b) For comparison a visible spectrum of NO2(g) in room air at 1.0 atm and 293 K. Minimum detectable absorbance was determined to be 5.3×10−6

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I 0 × e t τ + O .
A = ln ( I 0 I ) = n × l 2.303 × c ( 1 τ 1 τ 0 ) .
I 1 = m 0 w ( I 0 × e t τ + O ) cos ( π t w ) d t = m I 0 0 w e t τ cos ( π t w ) d t and
I 2 = m 0 w ( I 0 × e t τ + O ) cos ( 2 π t w ) d t = m I 0 0 w e t τ cos ( 2 π t w ) d t .
R = I 1 I 2 = 1 + 4 π 2 ( τ ) 2 1 + π 2 ( τ ) 2 1 + e 1 / τ 1 e 1 / t .
R = I 1 I 2 i = 1 k S i cos ( π t i w ) i = 1 k S i cos ( 2 π t i w ) .
average estimated   τ true τ true τ .

Metrics