Abstract

A new scheme of optical rectification (OR) of femtosecond laser pulses in a periodically poled lithium niobate (PPLN) crystal, which generates high energy and bandwidth tunable multicycle THz pulses, is proposed and demonstrated. We show that the number of the oscillation cycles of the THz electric field and therefore bandwidth of generated THz spectrum can easily and smoothly be tuned from a few tens of GHz to a few THz by changing the pump optical spot size on PPLN crystal. The minimal bandwidth is 17 GHz that is smallest ever of reported in scheme of THz generation by OR at room temperature. Similar to the case of Cherenkov-type OR in single-domain LiNbO3, the spectrum of THz generation extends from 0.1 THz to 3 THz when laser beam is focused to a size close to half-period of PPLN structure. The energy spectral density of narrowband THz generation is almost independent of the bandwidth and is typically 220 nJ/THz for ~1 W pump power at 1 kHz repetition rate.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008).
    [CrossRef]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  3. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  4. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
    [CrossRef]
  5. S. Yoshida, K. Suizu, E. Kato, Y. Nakagomi, Y. Ogawa, and K. Kawase, “A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties,” J. Mol. Spectrosc. 256(1), 146–151 (2009).
    [CrossRef]
  6. A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
    [CrossRef]
  7. J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
    [CrossRef] [PubMed]
  8. J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
    [CrossRef]
  9. Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99(7), 071102 (2011).
    [CrossRef]
  10. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
    [CrossRef]
  11. J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – part 1: theory,” Appl. Phys. B 86(2), 185–196 (2007).
    [CrossRef]
  12. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
    [CrossRef]
  13. C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett. 26(8), 563–565 (2001).
    [CrossRef] [PubMed]
  14. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 with 5 mm x 5 mm aperture,” Opt. Lett. 30(21), 2918–2920 (2005).
    [CrossRef] [PubMed]
  15. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
    [CrossRef]
  16. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
    [CrossRef]
  17. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
    [CrossRef]
  18. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
    [CrossRef] [PubMed]
  19. A. G. Stepanov, J. Hebling, and J. Kuhl, “Generation, tuning, and shaping of narrow-band, picosecond THz pulses by two-beam excitation,” Opt. Express 12(19), 4650–4658 (2004).
    [CrossRef] [PubMed]

2011 (2)

J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, “Tunable narrowband THz pulse generation in scalable large area photoconductive antennas,” Opt. Express 19(20), 19114–19121 (2011).
[CrossRef] [PubMed]

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99(7), 071102 (2011).
[CrossRef]

2010 (2)

2009 (1)

S. Yoshida, K. Suizu, E. Kato, Y. Nakagomi, Y. Ogawa, and K. Kawase, “A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties,” J. Mol. Spectrosc. 256(1), 146–151 (2009).
[CrossRef]

2008 (3)

G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008).
[CrossRef]

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
[CrossRef]

2007 (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – part 1: theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

2005 (2)

H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 with 5 mm x 5 mm aperture,” Opt. Lett. 30(21), 2918–2920 (2005).
[CrossRef] [PubMed]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[CrossRef]

2004 (1)

2001 (1)

2000 (2)

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[CrossRef]

1997 (1)

1994 (1)

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
[CrossRef]

Almási, G.

Auston, D. H.

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
[CrossRef]

Avetisyan, Y.

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – part 1: theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett. 26(8), 563–565 (2001).
[CrossRef] [PubMed]

Bartal, B.

Beigang, R.

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – part 1: theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett. 26(8), 563–565 (2001).
[CrossRef] [PubMed]

Chen, Z.

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99(7), 071102 (2011).
[CrossRef]

Danielson, J. R.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

DeCamp, M.

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[CrossRef]

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

Froberg, N. M.

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
[CrossRef]

Fülöp, J. A.

Galvanauskas, A.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[CrossRef]

Hebling, J.

Helm, M.

Hoffmann, M. C.

Hu, B. B.

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
[CrossRef]

Hui, H.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

Ishizuki, H.

Jameson, A. D.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

Jundt, D.

Kato, E.

S. Yoshida, K. Suizu, E. Kato, Y. Nakagomi, Y. Ogawa, and K. Kawase, “A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties,” J. Mol. Spectrosc. 256(1), 146–151 (2009).
[CrossRef]

Kawase, K.

S. Yoshida, K. Suizu, E. Kato, Y. Nakagomi, Y. Ogawa, and K. Kawase, “A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties,” J. Mol. Spectrosc. 256(1), 146–151 (2009).
[CrossRef]

Kitaeva, G. Kh.

G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008).
[CrossRef]

Krause, J.

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Generation, tuning, and shaping of narrow-band, picosecond THz pulses by two-beam excitation,” Opt. Express 12(19), 4650–4658 (2004).
[CrossRef] [PubMed]

L’huillier, J. A.

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – part 1: theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

Lee, Y.-S.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[CrossRef]

Meade, T.

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[CrossRef]

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

Nakagomi, Y.

S. Yoshida, K. Suizu, E. Kato, Y. Nakagomi, Y. Ogawa, and K. Kawase, “A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties,” J. Mol. Spectrosc. 256(1), 146–151 (2009).
[CrossRef]

Nelson, K. A.

Norris, T.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[CrossRef]

Norris, T. B.

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[CrossRef]

Ogawa, Y.

S. Yoshida, K. Suizu, E. Kato, Y. Nakagomi, Y. Ogawa, and K. Kawase, “A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties,” J. Mol. Spectrosc. 256(1), 146–151 (2009).
[CrossRef]

Pálfalvi, L.

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[CrossRef] [PubMed]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[CrossRef]

Perlin, V.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[CrossRef]

Péter, A.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[CrossRef]

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[CrossRef]

Small, D. L.

Stehr, D.

Stepanov, A. G.

Suizu, K.

S. Yoshida, K. Suizu, E. Kato, Y. Nakagomi, Y. Ogawa, and K. Kawase, “A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties,” J. Mol. Spectrosc. 256(1), 146–151 (2009).
[CrossRef]

Taira, T.

Theuer, M.

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – part 1: theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

Tomaino, J. L.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Torosyan, G.

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – part 1: theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett. 26(8), 563–565 (2001).
[CrossRef] [PubMed]

Vodopyanov, K. L.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

Wagner, M.

Weiss, C.

Weling, A. S.

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
[CrossRef]

Werley, C. A.

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99(7), 071102 (2011).
[CrossRef]

Wetzel, J. D.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

Winful, H.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[CrossRef]

Winnerl, S.

Yeh, K.-L.

Yoshida, S.

S. Yoshida, K. Suizu, E. Kato, Y. Nakagomi, Y. Ogawa, and K. Kawase, “A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties,” J. Mol. Spectrosc. 256(1), 146–151 (2009).
[CrossRef]

Zelmon, D. E.

Zhou, X.

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99(7), 071102 (2011).
[CrossRef]

Appl. Phys. B (1)

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – part 1: theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[CrossRef]

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
[CrossRef]

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett. 99(7), 071102 (2011).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[CrossRef]

J. Appl. Phys. (3)

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[CrossRef]

J. Mol. Spectrosc. (1)

S. Yoshida, K. Suizu, E. Kato, Y. Nakagomi, Y. Ogawa, and K. Kawase, “A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties,” J. Mol. Spectrosc. 256(1), 146–151 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (1)

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of THz wave generation in Z-cut PPLN crystal; the polarization of fs-laser pulse and optical axis of PPLN crystal are both along the Z direction (b) incident face of optical beam on PPLN crystal (in YZ plane), (c) top view schematic of THz generation (in XY plane) (d) corresponding wave vector diagram.

Fig. 2
Fig. 2

(a) Temporal forms of THz pulses generated with different pump beam spot sizes dy on the PPLN crystal (b) corresponding Fourier intensity spectra, and the inset shows the THz intensity spectrum with arbitrary unit generated by pump beam spot size dy ≈0.04 mm.

Fig. 3
Fig. 3

(a) Temporal forms of THz pulses generated with different pump powers in the PPLN crystal (b) THz power versus of pump intensity, solid line is fitted by Pimp ∝ (Io)1.8.

Fig. 4
Fig. 4

Energy of THz pulse and amplitude of THz field (see inset) versus of pump beam spot size dy in PPLN crystal.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k THz 2 = k g 2 + k Λ 2
f THz = c Λ n THz 2 n g 2 .

Metrics