Abstract

Ultrashort superradiant pulse generation from a 1580 nm AlGaInAs multiple quantum-well (MQW) semiconductor structure has been experimentally demonstrated for the first time. Superradiance is confirmed by analyzing the evolution of the optical temporal waveforms and spectra. Superradiant trends and regimes are studied as a function of driving condition. An optical pulse train is obtained at 1580 nm wavelength, with pulse durations as short as 390 fs and pulse peak powers of 7.2 W.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Andreev, V. I. Emel'yanov, and Y. A. Il'inskii, Cooperative Effects in Optics: Superradiance and Phase Transitions (IOP, 1993).
  2. P. P. Vasil'ev, “Femtosecond superradiant emission in inorganic semiconductors,” Rep. Prog. Phys.72(7), 076501 (2009).
    [CrossRef]
  3. M. O. Scully and A. A. Svidzinsky, “Physics. The super of superradiance,” Science325(5947), 1510–1511 (2009).
    [CrossRef] [PubMed]
  4. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev.93(1), 99–110 (1954).
    [CrossRef]
  5. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express16(12), 8916–8937 (2008).
    [CrossRef] [PubMed]
  6. V. I. Yukalov and E. P. Yukalova, “Dynamics of quantum dot superradiance,” Phys. Rev. B81(7), 075308 (2010).
    [CrossRef]
  7. T. Tokihiro, Y. Manabe, and E. Hanamura, “Superradiance of Frenkel excitons in linear systems,” Phys. Rev. B Condens. Matter47(4), 2019–2030 (1993).
    [CrossRef] [PubMed]
  8. Y. D. Jho, X. Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, V. V. Kocharovsky, and G. S. Solomon, “Cooperative recombination of a quantized high-density electron-hole plasma in semiconductor quantum wells,” Phys. Rev. Lett.96(23), 237401 (2006).
    [CrossRef] [PubMed]
  9. V. F. Olle, P. P. Vasil’ev, A. Wonfor, R. V. Penty, and I. H. White, “Ultrashort superradiant pulse generation from GaN/InGaN heterostructures,” Opt. Express20(7), 7035–7039 (2012).
    [CrossRef]
  10. F. Haake, H. King, G. Schroder, J. Haus, and R. Glauber, “Fluctuations in superfluorescence,” Phys. Rev. A20(5), 2047–2063 (1979).
    [CrossRef]

2012

2010

V. I. Yukalov and E. P. Yukalova, “Dynamics of quantum dot superradiance,” Phys. Rev. B81(7), 075308 (2010).
[CrossRef]

2009

P. P. Vasil'ev, “Femtosecond superradiant emission in inorganic semiconductors,” Rep. Prog. Phys.72(7), 076501 (2009).
[CrossRef]

M. O. Scully and A. A. Svidzinsky, “Physics. The super of superradiance,” Science325(5947), 1510–1511 (2009).
[CrossRef] [PubMed]

2008

2006

Y. D. Jho, X. Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, V. V. Kocharovsky, and G. S. Solomon, “Cooperative recombination of a quantized high-density electron-hole plasma in semiconductor quantum wells,” Phys. Rev. Lett.96(23), 237401 (2006).
[CrossRef] [PubMed]

1993

T. Tokihiro, Y. Manabe, and E. Hanamura, “Superradiance of Frenkel excitons in linear systems,” Phys. Rev. B Condens. Matter47(4), 2019–2030 (1993).
[CrossRef] [PubMed]

1979

F. Haake, H. King, G. Schroder, J. Haus, and R. Glauber, “Fluctuations in superfluorescence,” Phys. Rev. A20(5), 2047–2063 (1979).
[CrossRef]

1954

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev.93(1), 99–110 (1954).
[CrossRef]

Belyanin, A. A.

Y. D. Jho, X. Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, V. V. Kocharovsky, and G. S. Solomon, “Cooperative recombination of a quantized high-density electron-hole plasma in semiconductor quantum wells,” Phys. Rev. Lett.96(23), 237401 (2006).
[CrossRef] [PubMed]

Biedermann, B. R.

Dicke, R. H.

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev.93(1), 99–110 (1954).
[CrossRef]

Eigenwillig, C. M.

Glauber, R.

F. Haake, H. King, G. Schroder, J. Haus, and R. Glauber, “Fluctuations in superfluorescence,” Phys. Rev. A20(5), 2047–2063 (1979).
[CrossRef]

Haake, F.

F. Haake, H. King, G. Schroder, J. Haus, and R. Glauber, “Fluctuations in superfluorescence,” Phys. Rev. A20(5), 2047–2063 (1979).
[CrossRef]

Hanamura, E.

T. Tokihiro, Y. Manabe, and E. Hanamura, “Superradiance of Frenkel excitons in linear systems,” Phys. Rev. B Condens. Matter47(4), 2019–2030 (1993).
[CrossRef] [PubMed]

Haus, J.

F. Haake, H. King, G. Schroder, J. Haus, and R. Glauber, “Fluctuations in superfluorescence,” Phys. Rev. A20(5), 2047–2063 (1979).
[CrossRef]

Huber, R.

Jho, Y. D.

Y. D. Jho, X. Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, V. V. Kocharovsky, and G. S. Solomon, “Cooperative recombination of a quantized high-density electron-hole plasma in semiconductor quantum wells,” Phys. Rev. Lett.96(23), 237401 (2006).
[CrossRef] [PubMed]

King, H.

F. Haake, H. King, G. Schroder, J. Haus, and R. Glauber, “Fluctuations in superfluorescence,” Phys. Rev. A20(5), 2047–2063 (1979).
[CrossRef]

Kocharovsky, V. V.

Y. D. Jho, X. Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, V. V. Kocharovsky, and G. S. Solomon, “Cooperative recombination of a quantized high-density electron-hole plasma in semiconductor quantum wells,” Phys. Rev. Lett.96(23), 237401 (2006).
[CrossRef] [PubMed]

Y. D. Jho, X. Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, V. V. Kocharovsky, and G. S. Solomon, “Cooperative recombination of a quantized high-density electron-hole plasma in semiconductor quantum wells,” Phys. Rev. Lett.96(23), 237401 (2006).
[CrossRef] [PubMed]

Kono, J.

Y. D. Jho, X. Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, V. V. Kocharovsky, and G. S. Solomon, “Cooperative recombination of a quantized high-density electron-hole plasma in semiconductor quantum wells,” Phys. Rev. Lett.96(23), 237401 (2006).
[CrossRef] [PubMed]

Manabe, Y.

T. Tokihiro, Y. Manabe, and E. Hanamura, “Superradiance of Frenkel excitons in linear systems,” Phys. Rev. B Condens. Matter47(4), 2019–2030 (1993).
[CrossRef] [PubMed]

Olle, V. F.

Palte, G.

Penty, R. V.

Reitze, D. H.

Y. D. Jho, X. Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, V. V. Kocharovsky, and G. S. Solomon, “Cooperative recombination of a quantized high-density electron-hole plasma in semiconductor quantum wells,” Phys. Rev. Lett.96(23), 237401 (2006).
[CrossRef] [PubMed]

Schroder, G.

F. Haake, H. King, G. Schroder, J. Haus, and R. Glauber, “Fluctuations in superfluorescence,” Phys. Rev. A20(5), 2047–2063 (1979).
[CrossRef]

Scully, M. O.

M. O. Scully and A. A. Svidzinsky, “Physics. The super of superradiance,” Science325(5947), 1510–1511 (2009).
[CrossRef] [PubMed]

Solomon, G. S.

Y. D. Jho, X. Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, V. V. Kocharovsky, and G. S. Solomon, “Cooperative recombination of a quantized high-density electron-hole plasma in semiconductor quantum wells,” Phys. Rev. Lett.96(23), 237401 (2006).
[CrossRef] [PubMed]

Svidzinsky, A. A.

M. O. Scully and A. A. Svidzinsky, “Physics. The super of superradiance,” Science325(5947), 1510–1511 (2009).
[CrossRef] [PubMed]

Tokihiro, T.

T. Tokihiro, Y. Manabe, and E. Hanamura, “Superradiance of Frenkel excitons in linear systems,” Phys. Rev. B Condens. Matter47(4), 2019–2030 (1993).
[CrossRef] [PubMed]

Vasil’ev, P. P.

Vasil'ev, P. P.

P. P. Vasil'ev, “Femtosecond superradiant emission in inorganic semiconductors,” Rep. Prog. Phys.72(7), 076501 (2009).
[CrossRef]

Wang, X.

Y. D. Jho, X. Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, V. V. Kocharovsky, and G. S. Solomon, “Cooperative recombination of a quantized high-density electron-hole plasma in semiconductor quantum wells,” Phys. Rev. Lett.96(23), 237401 (2006).
[CrossRef] [PubMed]

Wei, X.

Y. D. Jho, X. Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, V. V. Kocharovsky, and G. S. Solomon, “Cooperative recombination of a quantized high-density electron-hole plasma in semiconductor quantum wells,” Phys. Rev. Lett.96(23), 237401 (2006).
[CrossRef] [PubMed]

White, I. H.

Wonfor, A.

Yukalov, V. I.

V. I. Yukalov and E. P. Yukalova, “Dynamics of quantum dot superradiance,” Phys. Rev. B81(7), 075308 (2010).
[CrossRef]

Yukalova, E. P.

V. I. Yukalov and E. P. Yukalova, “Dynamics of quantum dot superradiance,” Phys. Rev. B81(7), 075308 (2010).
[CrossRef]

Opt. Express

Phys. Rev.

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev.93(1), 99–110 (1954).
[CrossRef]

Phys. Rev. A

F. Haake, H. King, G. Schroder, J. Haus, and R. Glauber, “Fluctuations in superfluorescence,” Phys. Rev. A20(5), 2047–2063 (1979).
[CrossRef]

Phys. Rev. B

V. I. Yukalov and E. P. Yukalova, “Dynamics of quantum dot superradiance,” Phys. Rev. B81(7), 075308 (2010).
[CrossRef]

Phys. Rev. B Condens. Matter

T. Tokihiro, Y. Manabe, and E. Hanamura, “Superradiance of Frenkel excitons in linear systems,” Phys. Rev. B Condens. Matter47(4), 2019–2030 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Y. D. Jho, X. Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, V. V. Kocharovsky, and G. S. Solomon, “Cooperative recombination of a quantized high-density electron-hole plasma in semiconductor quantum wells,” Phys. Rev. Lett.96(23), 237401 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys.

P. P. Vasil'ev, “Femtosecond superradiant emission in inorganic semiconductors,” Rep. Prog. Phys.72(7), 076501 (2009).
[CrossRef]

Science

M. O. Scully and A. A. Svidzinsky, “Physics. The super of superradiance,” Science325(5947), 1510–1511 (2009).
[CrossRef] [PubMed]

Other

A. V. Andreev, V. I. Emel'yanov, and Y. A. Il'inskii, Cooperative Effects in Optics: Superradiance and Phase Transitions (IOP, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the QW epitaxial (left) and waveguide (right) structure.

Fig. 2
Fig. 2

SR pulse evolution: drive pulse amplitude fixed at 400 mA while reverse bias voltage changing from 0 to 8 V. Pulse waveforms (upper, 1 ns/div.) and optical spectra (lower, resolution 0.07 nm).

Fig. 3
Fig. 3

(a) The investigated QW device can work in different operating regimes: pulse modulation, Q-switching and SR emission; (b) measured average output power as a function of driving conditions, the operating regimes can also be reflected by the average output power.

Fig. 4
Fig. 4

(a) Autocorrelation trace for SR emission under 325 mA driving current and −5.95 V reverse bias voltage; (b) corresponding optical spectrum.

Metrics