Abstract

We show that fiber optic tips can be used as microbubble generators in liquid media. Using standard single-mode silica fibers incorporating nanoparticles (carbon nanoparticles and metallic powders), bubbles can be generated with low optical powers owing to the enhanced photothermal effects of the coating materials. We provide details about the hydrodynamic effects generated in the vicinity of the fiber tip during the coating process, bubble generation and growth. Flow visualization techniques show that thermal effects lead to bubble formation on the tip of the fibers, and coating optimization is crucial for optimal performance of the probes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Katzir, Lasers and Optical Fibers in Medicine (Academic Press, 1993).
  2. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Act. B 125(2), 688–703 (2007).
    [CrossRef]
  3. C. J. de Lima, L. M. Moreira, J. P. Lyon, A. B. Villaverde, and M. T. T. Pacheco, “Catheters: instrumental advancements in biomedical applications of optical fibers,” Lasers Med. Sci. 24(4), 621–626 (2009).
    [CrossRef] [PubMed]
  4. A. Ashkin, “History of optical trapping and manipulation of small-neutral particles, atoms and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
    [CrossRef]
  5. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  6. V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, “Laser-induced hydrodynamics in water-saturated biotissues: 1. Generation of bubbles in liquid,” Laser Phys. 20(7), 1641–1646 (2010).
    [CrossRef]
  7. V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, “Laser-induced hydrodynamics in water-saturated biotissues: 2. Effect on delivery fiber,” Laser Phys. 21(7), 1230–1234 (2011).
    [CrossRef]
  8. K. F. MacDonald, V. A. Fedotov, S. Pochon, B. F. Soares, N. I. Zheludev, C. Guignard, A. Mihaescu, and P. Besnard, “Oscillating bubbles at the tips of optical fibers in liquid nitrogen,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 027301 (2003).
    [CrossRef] [PubMed]
  9. R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
    [CrossRef]
  10. J. C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-Garcia, “Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids,” Opt. Express 18(9), 8735–8742 (2010).
    [CrossRef] [PubMed]
  11. J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express 15(15), 9176–9183 (2007).
    [CrossRef] [PubMed]
  12. K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys. 46(40), L988–L990 (2007).
    [CrossRef]
  13. R. Pimentel-Domínguez, N. Cuando-Espitia, and J. Hernández-Cordero, “Optically driven deposition of nanostructures on optical fiber end faces,” Proc. SPIE 7839, 78391X, 78391X-4 (2010).
    [CrossRef]
  14. D. W. Berry, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt. 47, 1575–1585 (2000).
  15. H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21(24), 245102 (2010).
    [CrossRef] [PubMed]
  16. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
    [CrossRef] [PubMed]

2011 (1)

V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, “Laser-induced hydrodynamics in water-saturated biotissues: 2. Effect on delivery fiber,” Laser Phys. 21(7), 1230–1234 (2011).
[CrossRef]

2010 (4)

V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, “Laser-induced hydrodynamics in water-saturated biotissues: 1. Generation of bubbles in liquid,” Laser Phys. 20(7), 1641–1646 (2010).
[CrossRef]

J. C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-Garcia, “Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids,” Opt. Express 18(9), 8735–8742 (2010).
[CrossRef] [PubMed]

R. Pimentel-Domínguez, N. Cuando-Espitia, and J. Hernández-Cordero, “Optically driven deposition of nanostructures on optical fiber end faces,” Proc. SPIE 7839, 78391X, 78391X-4 (2010).
[CrossRef]

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21(24), 245102 (2010).
[CrossRef] [PubMed]

2009 (2)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

C. J. de Lima, L. M. Moreira, J. P. Lyon, A. B. Villaverde, and M. T. T. Pacheco, “Catheters: instrumental advancements in biomedical applications of optical fibers,” Lasers Med. Sci. 24(4), 621–626 (2009).
[CrossRef] [PubMed]

2007 (3)

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Act. B 125(2), 688–703 (2007).
[CrossRef]

J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express 15(15), 9176–9183 (2007).
[CrossRef] [PubMed]

K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys. 46(40), L988–L990 (2007).
[CrossRef]

2004 (1)

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[CrossRef]

2003 (2)

K. F. MacDonald, V. A. Fedotov, S. Pochon, B. F. Soares, N. I. Zheludev, C. Guignard, A. Mihaescu, and P. Besnard, “Oscillating bubbles at the tips of optical fibers in liquid nitrogen,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 027301 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2000 (2)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particles, atoms and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

D. W. Berry, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt. 47, 1575–1585 (2000).

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particles, atoms and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

Bagratashvili, V. N.

V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, “Laser-induced hydrodynamics in water-saturated biotissues: 2. Effect on delivery fiber,” Laser Phys. 21(7), 1230–1234 (2011).
[CrossRef]

V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, “Laser-induced hydrodynamics in water-saturated biotissues: 1. Generation of bubbles in liquid,” Laser Phys. 20(7), 1641–1646 (2010).
[CrossRef]

Baldovino-Pantaleon, O.

Bambardekar, K.

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21(24), 245102 (2010).
[CrossRef] [PubMed]

Basu, H.

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21(24), 245102 (2010).
[CrossRef] [PubMed]

Berry, D. W.

D. W. Berry, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt. 47, 1575–1585 (2000).

Besnard, P.

K. F. MacDonald, V. A. Fedotov, S. Pochon, B. F. Soares, N. I. Zheludev, C. Guignard, A. Mihaescu, and P. Besnard, “Oscillating bubbles at the tips of optical fibers in liquid nitrogen,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 027301 (2003).
[CrossRef] [PubMed]

Chudnovskii, V. M.

V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, “Laser-induced hydrodynamics in water-saturated biotissues: 2. Effect on delivery fiber,” Laser Phys. 21(7), 1230–1234 (2011).
[CrossRef]

V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, “Laser-induced hydrodynamics in water-saturated biotissues: 1. Generation of bubbles in liquid,” Laser Phys. 20(7), 1641–1646 (2010).
[CrossRef]

Cuando-Espitia, N.

R. Pimentel-Domínguez, N. Cuando-Espitia, and J. Hernández-Cordero, “Optically driven deposition of nanostructures on optical fiber end faces,” Proc. SPIE 7839, 78391X, 78391X-4 (2010).
[CrossRef]

de Lima, C. J.

C. J. de Lima, L. M. Moreira, J. P. Lyon, A. B. Villaverde, and M. T. T. Pacheco, “Catheters: instrumental advancements in biomedical applications of optical fibers,” Lasers Med. Sci. 24(4), 621–626 (2009).
[CrossRef] [PubMed]

Dharmadhikari, A. K.

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21(24), 245102 (2010).
[CrossRef] [PubMed]

Dharmadhikari, J. A.

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21(24), 245102 (2010).
[CrossRef] [PubMed]

Digiovanni, D. J.

Fedotov, V. A.

K. F. MacDonald, V. A. Fedotov, S. Pochon, B. F. Soares, N. I. Zheludev, C. Guignard, A. Mihaescu, and P. Besnard, “Oscillating bubbles at the tips of optical fibers in liquid nitrogen,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 027301 (2003).
[CrossRef] [PubMed]

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Guignard, C.

K. F. MacDonald, V. A. Fedotov, S. Pochon, B. F. Soares, N. I. Zheludev, C. Guignard, A. Mihaescu, and P. Besnard, “Oscillating bubbles at the tips of optical fibers in liquid nitrogen,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 027301 (2003).
[CrossRef] [PubMed]

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Heckenberg, N. R.

D. W. Berry, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt. 47, 1575–1585 (2000).

Hernández-Cordero, J.

R. Pimentel-Domínguez, N. Cuando-Espitia, and J. Hernández-Cordero, “Optically driven deposition of nanostructures on optical fiber end faces,” Proc. SPIE 7839, 78391X, 78391X-4 (2010).
[CrossRef]

Hnatovsky, C.

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[CrossRef]

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Kashiwagi, K.

K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys. 46(40), L988–L990 (2007).
[CrossRef]

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Korneev, N.

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Act. B 125(2), 688–703 (2007).
[CrossRef]

Lyon, J. P.

C. J. de Lima, L. M. Moreira, J. P. Lyon, A. B. Villaverde, and M. T. T. Pacheco, “Catheters: instrumental advancements in biomedical applications of optical fibers,” Lasers Med. Sci. 24(4), 621–626 (2009).
[CrossRef] [PubMed]

MacDonald, K. F.

K. F. MacDonald, V. A. Fedotov, S. Pochon, B. F. Soares, N. I. Zheludev, C. Guignard, A. Mihaescu, and P. Besnard, “Oscillating bubbles at the tips of optical fibers in liquid nitrogen,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 027301 (2003).
[CrossRef] [PubMed]

Martinez-Canton, A. E.

Mathur, D.

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21(24), 245102 (2010).
[CrossRef] [PubMed]

Mihaescu, A.

K. F. MacDonald, V. A. Fedotov, S. Pochon, B. F. Soares, N. I. Zheludev, C. Guignard, A. Mihaescu, and P. Besnard, “Oscillating bubbles at the tips of optical fibers in liquid nitrogen,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 027301 (2003).
[CrossRef] [PubMed]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Moreira, L. M.

C. J. de Lima, L. M. Moreira, J. P. Lyon, A. B. Villaverde, and M. T. T. Pacheco, “Catheters: instrumental advancements in biomedical applications of optical fibers,” Lasers Med. Sci. 24(4), 621–626 (2009).
[CrossRef] [PubMed]

Mutharasan, R.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Act. B 125(2), 688–703 (2007).
[CrossRef]

Nicholson, J. W.

Pacheco, M. T. T.

C. J. de Lima, L. M. Moreira, J. P. Lyon, A. B. Villaverde, and M. T. T. Pacheco, “Catheters: instrumental advancements in biomedical applications of optical fibers,” Lasers Med. Sci. 24(4), 621–626 (2009).
[CrossRef] [PubMed]

Pimentel-Domínguez, R.

R. Pimentel-Domínguez, N. Cuando-Espitia, and J. Hernández-Cordero, “Optically driven deposition of nanostructures on optical fiber end faces,” Proc. SPIE 7839, 78391X, 78391X-4 (2010).
[CrossRef]

Pochon, S.

K. F. MacDonald, V. A. Fedotov, S. Pochon, B. F. Soares, N. I. Zheludev, C. Guignard, A. Mihaescu, and P. Besnard, “Oscillating bubbles at the tips of optical fibers in liquid nitrogen,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 027301 (2003).
[CrossRef] [PubMed]

Ramachandran, H.

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21(24), 245102 (2010).
[CrossRef] [PubMed]

Ramirez-San-Juan, J. C.

Ramos-Garcia, R.

Robledo-Martinez, A.

Rodriguez-Aboytes, E.

Rubinsztein-Dunlop, H.

D. W. Berry, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt. 47, 1575–1585 (2000).

Set, S. Y.

K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys. 46(40), L988–L990 (2007).
[CrossRef]

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Act. B 125(2), 688–703 (2007).
[CrossRef]

Sharma, S.

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21(24), 245102 (2010).
[CrossRef] [PubMed]

Soares, B. F.

K. F. MacDonald, V. A. Fedotov, S. Pochon, B. F. Soares, N. I. Zheludev, C. Guignard, A. Mihaescu, and P. Besnard, “Oscillating bubbles at the tips of optical fibers in liquid nitrogen,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 027301 (2003).
[CrossRef] [PubMed]

Taylor, R. S.

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[CrossRef]

Villaverde, A. B.

C. J. de Lima, L. M. Moreira, J. P. Lyon, A. B. Villaverde, and M. T. T. Pacheco, “Catheters: instrumental advancements in biomedical applications of optical fibers,” Lasers Med. Sci. 24(4), 621–626 (2009).
[CrossRef] [PubMed]

Windeler, R. S.

Yamashita, S.

K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys. 46(40), L988–L990 (2007).
[CrossRef]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Yusupov, V. I.

V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, “Laser-induced hydrodynamics in water-saturated biotissues: 2. Effect on delivery fiber,” Laser Phys. 21(7), 1230–1234 (2011).
[CrossRef]

V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, “Laser-induced hydrodynamics in water-saturated biotissues: 1. Generation of bubbles in liquid,” Laser Phys. 20(7), 1641–1646 (2010).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, V. A. Fedotov, S. Pochon, B. F. Soares, N. I. Zheludev, C. Guignard, A. Mihaescu, and P. Besnard, “Oscillating bubbles at the tips of optical fibers in liquid nitrogen,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 027301 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particles, atoms and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

J. Appl. Phys. (1)

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[CrossRef]

J. Mod. Opt. (1)

D. W. Berry, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt. 47, 1575–1585 (2000).

Jpn. J. Appl. Phys. (1)

K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys. 46(40), L988–L990 (2007).
[CrossRef]

Laser Phys. (2)

V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, “Laser-induced hydrodynamics in water-saturated biotissues: 1. Generation of bubbles in liquid,” Laser Phys. 20(7), 1641–1646 (2010).
[CrossRef]

V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, “Laser-induced hydrodynamics in water-saturated biotissues: 2. Effect on delivery fiber,” Laser Phys. 21(7), 1230–1234 (2011).
[CrossRef]

Lasers Med. Sci. (1)

C. J. de Lima, L. M. Moreira, J. P. Lyon, A. B. Villaverde, and M. T. T. Pacheco, “Catheters: instrumental advancements in biomedical applications of optical fibers,” Lasers Med. Sci. 24(4), 621–626 (2009).
[CrossRef] [PubMed]

Nanotechnology (1)

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21(24), 245102 (2010).
[CrossRef] [PubMed]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

K. F. MacDonald, V. A. Fedotov, S. Pochon, B. F. Soares, N. I. Zheludev, C. Guignard, A. Mihaescu, and P. Besnard, “Oscillating bubbles at the tips of optical fibers in liquid nitrogen,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2), 027301 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. Pimentel-Domínguez, N. Cuando-Espitia, and J. Hernández-Cordero, “Optically driven deposition of nanostructures on optical fiber end faces,” Proc. SPIE 7839, 78391X, 78391X-4 (2010).
[CrossRef]

Sens. Act. B (1)

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Act. B 125(2), 688–703 (2007).
[CrossRef]

Other (1)

A. Katzir, Lasers and Optical Fibers in Medicine (Academic Press, 1993).

Supplementary Material (3)

» Media 1: AVI (2177 KB)     
» Media 2: AVI (2333 KB)     
» Media 3: MOV (6351 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup for nanoparticle deposition onto optical fibers. (b) Arrangement for visualization of bubble generation.

Fig. 2
Fig. 2

Flow patterns obtained with the high-speed camera (1000 fps). The lines indicate the trajectories of the nanoparticles (graphite) after the laser diode is turned on (Media 1), and after the bubble is generated (Media 2). The laser diode output power was 2.9 mW and the core/cladding size of the fiber was 8/125 μm (the gravity force points into the image).

Fig. 3
Fig. 3

Shadowgraph images (left) obtained during bubble growth (right). The fiber probe is coated with carbon nanotubes and immersed in clean methanol (optical power during deposition: 57.5 mW, laser diode output power: 180 mW). After reaching a maximum size, the bubble detaches from the probe and another bubble is formed immediately after (Media 3). In these experiments the gravity force points downwards (same direction as the fiber).

Fig. 4
Fig. 4

Bubble size (a) and lifetime (b) for the different fiber tips fabricated for our experiments. Each fiber tip was fabricated using different optical powers for nanoparticle deposition (MWCNT-multi-wall carbon nanotubes, SNP-silver nanoparticles). Also shown in (b) is the lifetime as a function of energy as obtained from the force and mass balances (green line, see Eq. (8)).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

4 π 3 R 3 B m a x ρ v g = σ ( 2 π R F )
R 3 B m a x = 3 2 σ ρ v g R F
m = 1 ρ v V t = 1 ρ v ( 4 π R 2 R t )
Q = m L
Q = m L
1 L Q = 1 ρ v ( 4 π R 2 R t )
T = 4 π 3 L ρ v 1 Q R B m a x 3
T = 2 π L σ ρ 2 v g R F Q

Metrics