Abstract

We report the first observation of supercontinuum (SC) generation in single semiconductor nanoribbons (NRs). By launching a continuous wave (CW) 532-nm pump light along a 200-μm-length CdS NR for waveguiding excitation, SC generation is realized with a threshold down to sub-milliwatt level, which is ~3 orders lower compared with previous CW-pumped SC generated in glass fibers. The low threshold is benefitted from the favorable material properties and waveguide geometries including high Raman gains, strong light confinement, more optical guided modes and phonon modes. Our work paves the way to low-threshold nanoscale SC sources and may find widespread applications ranging from spectroscopic analysis and biological imaging to material research.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, The Principle of Nonlinear Optics (Wiley, New York, 1984).
  2. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, Boston, 2003).
  3. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, Singapore, 2007).
  4. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
    [CrossRef]
  5. W. L. Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A 15(6), 2396–2403 (1977).
    [CrossRef]
  6. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
    [CrossRef]
  7. T. A. Birks, W. J. Wadsworth, and P. S. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
    [CrossRef] [PubMed]
  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [CrossRef] [PubMed]
  9. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37(9), 558–560 (2001).
    [CrossRef]
  10. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19(4), 753–764 (2002).
    [CrossRef]
  11. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29(18), 2163–2165 (2004).
    [CrossRef] [PubMed]
  12. N. A. Wolchover, F. Luan, A. K. George, J. C. Knight, and F. G. Omenetto, “High nonlinearity glass photonic crystal nanowires,” Opt. Express 15(3), 829–833 (2007).
    [CrossRef] [PubMed]
  13. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  14. P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3-14 microm in dielectrics and semiconductors,” Opt. Lett. 10(12), 624–626 (1985).
    [CrossRef] [PubMed]
  15. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [CrossRef] [PubMed]
  16. Y. S. Kivshar, “Nonlinear optics: the next decade,” Opt. Express 16(26), 22126–22128 (2008).
    [CrossRef] [PubMed]
  17. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
    [CrossRef] [PubMed]
  18. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
    [CrossRef] [PubMed]
  19. S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
    [CrossRef] [PubMed]
  20. J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated Raman scattering from short GaP nanowires,” Nano Lett. 9(9), 3252–3257 (2009).
    [CrossRef] [PubMed]
  21. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
    [CrossRef] [PubMed]
  22. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [CrossRef] [PubMed]
  23. F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
    [CrossRef] [PubMed]
  24. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
    [CrossRef]
  25. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [CrossRef]
  26. A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
    [CrossRef] [PubMed]
  27. R. Venugopal, P.-I. Lin, C.-C. Liu, and Y.-T. Chen, “Surface-enhanced raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127(32), 11262–11268 (2005).
    [CrossRef] [PubMed]
  28. E. D. Palik, Handbook of Optical Constants of Solids (New York, Academic, 1991).
  29. F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
    [CrossRef] [PubMed]
  30. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004).
    [CrossRef] [PubMed]
  31. K.-Y. Lee, J.-R. Lim, H. Rho, Y.-J. Choi, K. J. Choi, and J.-G. Park, “Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91(20), 201901 (2007).
    [CrossRef]
  32. A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109(51), 24268–24272 (2005).
    [CrossRef] [PubMed]
  33. T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2(2), 168–187 (2010).
    [CrossRef] [PubMed]
  34. X. S. Zhao, J. Schroeder, P. D. Persans, and T. G. Bilodeau, “Resonant-Raman-scattering and photoluminescence studies in glass-composite and colloidal CdS,” Phys. Rev. B Condens. Matter 43(15), 12580–12589 (1991).
    [CrossRef] [PubMed]
  35. Z. Zhang, M. Qiu, U. Andersson, and L. Tong, “Subwavelength-diameter silica wire for light in-coupling to silicon-based waveguide,” Chin. Opt. Lett. 5, 577–579 (2007).
  36. F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
    [CrossRef] [PubMed]
  37. F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
    [CrossRef] [PubMed]
  38. H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at. 532 nm,” Opt. Commun. 190(1-6), 351–356 (2001).
    [CrossRef]
  39. J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano 2(2), 357–367 (2008).
    [CrossRef] [PubMed]
  40. R. C. C. Leite, J. F. Scott, and T. C. Damen, “Multiple-phonon resonant Raman scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
    [CrossRef]
  41. Y. Zhang, H. Son, J. Zhang, J. Kong, and Z. J. Liu, “Laser-heating effect on Raman spectra of individual suspended single-walled carbon nanotubes,” PhysChemComm 111, 1988–1992 (2007).
  42. J. B. Grun, A. K. McQuillan, and B. P. Stoicheff, “Intensity and gain measurements on the stimulated Raman emission in liquid O2 and N2,” Phys. Rev. 180(1), 61–68 (1969).
    [CrossRef]
  43. F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express 19(11), 10880–10885 (2011).
    [CrossRef] [PubMed]
  44. F. Gu, L. Zhang, H. Yu, W. Fang, J. Bao, and L. Tong, “Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation,” Nanotechnology 22(42), 425201 (2011).
    [CrossRef] [PubMed]
  45. H. Haug and S. Schmitt-Rink, “Basic mechanisms of the optical nonlinearities of semiconductors near the band edge,” J. Opt. Soc. Am. B 2(7), 1135–1142 (1985).
    [CrossRef]
  46. J. C. Knight and D. V. Skryabin, “Nonlinear waveguide optics and photonic crystal fibers,” Opt. Express 15(23), 15365–15376 (2007).
    [CrossRef] [PubMed]
  47. X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 13–33 (2012).
    [CrossRef] [PubMed]

2012 (1)

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 13–33 (2012).
[CrossRef] [PubMed]

2011 (3)

F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express 19(11), 10880–10885 (2011).
[CrossRef] [PubMed]

F. Gu, L. Zhang, H. Yu, W. Fang, J. Bao, and L. Tong, “Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation,” Nanotechnology 22(42), 425201 (2011).
[CrossRef] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

2010 (3)

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[CrossRef] [PubMed]

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2(2), 168–187 (2010).
[CrossRef] [PubMed]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

2009 (4)

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
[CrossRef] [PubMed]

J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated Raman scattering from short GaP nanowires,” Nano Lett. 9(9), 3252–3257 (2009).
[CrossRef] [PubMed]

2008 (5)

2007 (7)

Y. Zhang, H. Son, J. Zhang, J. Kong, and Z. J. Liu, “Laser-heating effect on Raman spectra of individual suspended single-walled carbon nanotubes,” PhysChemComm 111, 1988–1992 (2007).

J. C. Knight and D. V. Skryabin, “Nonlinear waveguide optics and photonic crystal fibers,” Opt. Express 15(23), 15365–15376 (2007).
[CrossRef] [PubMed]

Z. Zhang, M. Qiu, U. Andersson, and L. Tong, “Subwavelength-diameter silica wire for light in-coupling to silicon-based waveguide,” Chin. Opt. Lett. 5, 577–579 (2007).

K.-Y. Lee, J.-R. Lim, H. Rho, Y.-J. Choi, K. J. Choi, and J.-G. Park, “Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91(20), 201901 (2007).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

N. A. Wolchover, F. Luan, A. K. George, J. C. Knight, and F. G. Omenetto, “High nonlinearity glass photonic crystal nanowires,” Opt. Express 15(3), 829–833 (2007).
[CrossRef] [PubMed]

2005 (3)

A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef] [PubMed]

R. Venugopal, P.-I. Lin, C.-C. Liu, and Y.-T. Chen, “Surface-enhanced raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127(32), 11262–11268 (2005).
[CrossRef] [PubMed]

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109(51), 24268–24272 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (1)

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

2002 (1)

2001 (2)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37(9), 558–560 (2001).
[CrossRef]

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at. 532 nm,” Opt. Commun. 190(1-6), 351–356 (2001).
[CrossRef]

2000 (2)

1991 (1)

X. S. Zhao, J. Schroeder, P. D. Persans, and T. G. Bilodeau, “Resonant-Raman-scattering and photoluminescence studies in glass-composite and colloidal CdS,” Phys. Rev. B Condens. Matter 43(15), 12580–12589 (1991).
[CrossRef] [PubMed]

1985 (2)

1977 (1)

W. L. Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A 15(6), 2396–2403 (1977).
[CrossRef]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

1969 (2)

J. B. Grun, A. K. McQuillan, and B. P. Stoicheff, “Intensity and gain measurements on the stimulated Raman emission in liquid O2 and N2,” Phys. Rev. 180(1), 61–68 (1969).
[CrossRef]

R. C. C. Leite, J. F. Scott, and T. C. Damen, “Multiple-phonon resonant Raman scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[CrossRef]

Abeeluck, A. K.

Afshar V, S.

Agrawal, G. P.

Alfano, R. R.

P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3-14 microm in dielectrics and semiconductors,” Opt. Lett. 10(12), 624–626 (1985).
[CrossRef] [PubMed]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

Andersson, U.

Bando, Y.

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2(2), 168–187 (2010).
[CrossRef] [PubMed]

Bao, J.

F. Gu, L. Zhang, H. Yu, W. Fang, J. Bao, and L. Tong, “Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation,” Nanotechnology 22(42), 425201 (2011).
[CrossRef] [PubMed]

Biancalana, F.

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[CrossRef] [PubMed]

Bilodeau, T. G.

X. S. Zhao, J. Schroeder, P. D. Persans, and T. G. Bilodeau, “Resonant-Raman-scattering and photoluminescence studies in glass-composite and colloidal CdS,” Phys. Rev. B Condens. Matter 43(15), 12580–12589 (1991).
[CrossRef] [PubMed]

Birks, T. A.

Bloembergen, N.

W. L. Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A 15(6), 2396–2403 (1977).
[CrossRef]

Chau, A. H. L.

Chen, K.

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109(51), 24268–24272 (2005).
[CrossRef] [PubMed]

Chen, Y.-T.

R. Venugopal, P.-I. Lin, C.-C. Liu, and Y.-T. Chen, “Surface-enhanced raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127(32), 11262–11268 (2005).
[CrossRef] [PubMed]

Choi, K. J.

K.-Y. Lee, J.-R. Lim, H. Rho, Y.-J. Choi, K. J. Choi, and J.-G. Park, “Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91(20), 201901 (2007).
[CrossRef]

Choi, Y.-J.

K.-Y. Lee, J.-R. Lim, H. Rho, Y.-J. Choi, K. J. Choi, and J.-G. Park, “Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91(20), 201901 (2007).
[CrossRef]

Coen, S.

Corkum, P. B.

Damen, T. C.

R. C. C. Leite, J. F. Scott, and T. C. Damen, “Multiple-phonon resonant Raman scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[CrossRef]

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37(9), 558–560 (2001).
[CrossRef]

Ebendorff-Heidepriem, H.

Eggleton, B. J.

D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37(9), 558–560 (2001).
[CrossRef]

Eklund, P. C.

J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated Raman scattering from short GaP nanowires,” Nano Lett. 9(9), 3252–3257 (2009).
[CrossRef] [PubMed]

Fang, W.

F. Gu, L. Zhang, H. Yu, W. Fang, J. Bao, and L. Tong, “Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation,” Nanotechnology 22(42), 425201 (2011).
[CrossRef] [PubMed]

Fang, X.

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2(2), 168–187 (2010).
[CrossRef] [PubMed]

Foster, M. A.

Fu, L.

Gaeta, A. L.

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Gates, B.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

George, A. K.

Golberg, D.

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2(2), 168–187 (2010).
[CrossRef] [PubMed]

Grossard, N.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37(9), 558–560 (2001).
[CrossRef]

Grun, J. B.

J. B. Grun, A. K. McQuillan, and B. P. Stoicheff, “Intensity and gain measurements on the stimulated Raman emission in liquid O2 and N2,” Phys. Rev. 180(1), 61–68 (1969).
[CrossRef]

Gu, F.

F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express 19(11), 10880–10885 (2011).
[CrossRef] [PubMed]

F. Gu, L. Zhang, H. Yu, W. Fang, J. Bao, and L. Tong, “Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation,” Nanotechnology 22(42), 425201 (2011).
[CrossRef] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Guo, B.

Gupta, A. K.

J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated Raman scattering from short GaP nanowires,” Nano Lett. 9(9), 3252–3257 (2009).
[CrossRef] [PubMed]

Gutierrez, H. R.

J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated Raman scattering from short GaP nanowires,” Nano Lett. 9(9), 3252–3257 (2009).
[CrossRef] [PubMed]

Harvey, J. D.

Haug, H.

Headley, C.

Ho, P. P.

Ji, W.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at. 532 nm,” Opt. Commun. 190(1-6), 351–356 (2001).
[CrossRef]

Jørgensen, C. G.

Kam, C. H.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at. 532 nm,” Opt. Commun. 190(1-6), 351–356 (2001).
[CrossRef]

Kim, F.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Kivshar, Y. S.

Knight, J. C.

Kong, J.

Y. Zhang, H. Son, J. Zhang, J. Kong, and Z. J. Liu, “Laser-heating effect on Raman spectra of individual suspended single-walled carbon nanotubes,” PhysChemComm 111, 1988–1992 (2007).

Kosel, T. H.

J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano 2(2), 357–367 (2008).
[CrossRef] [PubMed]

Kuno, M.

J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano 2(2), 357–367 (2008).
[CrossRef] [PubMed]

Lam, Y. L.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at. 532 nm,” Opt. Commun. 190(1-6), 351–356 (2001).
[CrossRef]

Lamont, M. R. E.

Lan, A.

J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano 2(2), 357–367 (2008).
[CrossRef] [PubMed]

Lee, K.-Y.

K.-Y. Lee, J.-R. Lim, H. Rho, Y.-J. Choi, K. J. Choi, and J.-G. Park, “Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91(20), 201901 (2007).
[CrossRef]

Leite, R. C. C.

R. C. C. Leite, J. F. Scott, and T. C. Damen, “Multiple-phonon resonant Raman scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[CrossRef]

Leonhardt, R.

Leon-Saval, S. G.

Li, H. P.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at. 532 nm,” Opt. Commun. 190(1-6), 351–356 (2001).
[CrossRef]

Li, L.

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2(2), 168–187 (2010).
[CrossRef] [PubMed]

Lim, J.-R.

K.-Y. Lee, J.-R. Lim, H. Rho, Y.-J. Choi, K. J. Choi, and J.-G. Park, “Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91(20), 201901 (2007).
[CrossRef]

Lin, P.-I.

R. Venugopal, P.-I. Lin, C.-C. Liu, and Y.-T. Chen, “Surface-enhanced raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127(32), 11262–11268 (2005).
[CrossRef] [PubMed]

Lin, Q.

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Lipson, M.

Liu, C.-C.

R. Venugopal, P.-I. Lin, C.-C. Liu, and Y.-T. Chen, “Surface-enhanced raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127(32), 11262–11268 (2005).
[CrossRef] [PubMed]

Liu, D.

A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef] [PubMed]

Liu, P.

W. L. Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A 15(6), 2396–2403 (1977).
[CrossRef]

Liu, R.

A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef] [PubMed]

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109(51), 24268–24272 (2005).
[CrossRef] [PubMed]

Liu, Z. J.

Y. Zhang, H. Son, J. Zhang, J. Kong, and Z. J. Liu, “Laser-heating effect on Raman spectra of individual suspended single-walled carbon nanotubes,” PhysChemComm 111, 1988–1992 (2007).

Lou, J.

Luan, F.

Mägi, E. C.

Maillotte, H.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37(9), 558–560 (2001).
[CrossRef]

Manassah, J. T.

Mason, M. W.

Mayers, B.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Mazur, E.

McQuillan, A. K.

J. B. Grun, A. K. McQuillan, and B. P. Stoicheff, “Intensity and gain measurements on the stimulated Raman emission in liquid O2 and N2,” Phys. Rev. 180(1), 61–68 (1969).
[CrossRef]

Moll, K. D.

Monro, T. M.

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Ning, C. Z.

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 13–33 (2012).
[CrossRef] [PubMed]

Omenetto, F. G.

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Painter, O. J.

Pan, A.

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 13–33 (2012).
[CrossRef] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109(51), 24268–24272 (2005).
[CrossRef] [PubMed]

A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef] [PubMed]

Park, J.-G.

K.-Y. Lee, J.-R. Lim, H. Rho, Y.-J. Choi, K. J. Choi, and J.-G. Park, “Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91(20), 201901 (2007).
[CrossRef]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Persans, P. D.

X. S. Zhao, J. Schroeder, P. D. Persans, and T. G. Bilodeau, “Resonant-Raman-scattering and photoluminescence studies in glass-composite and colloidal CdS,” Phys. Rev. B Condens. Matter 43(15), 12580–12589 (1991).
[CrossRef] [PubMed]

Provino, L.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37(9), 558–560 (2001).
[CrossRef]

Puthussery, J.

J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano 2(2), 357–367 (2008).
[CrossRef] [PubMed]

Qiu, M.

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Ranka, J. K.

Rho, H.

K.-Y. Lee, J.-R. Lim, H. Rho, Y.-J. Choi, K. J. Choi, and J.-G. Park, “Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91(20), 201901 (2007).
[CrossRef]

Roelens, M. A. F.

Russell, P. S.

Russell, P. S. J.

Russell, P. St. J.

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[CrossRef] [PubMed]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Schmidt, M. A.

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[CrossRef] [PubMed]

Schmitt-Rink, S.

Schroeder, J.

X. S. Zhao, J. Schroeder, P. D. Persans, and T. G. Bilodeau, “Resonant-Raman-scattering and photoluminescence studies in glass-composite and colloidal CdS,” Phys. Rev. B Condens. Matter 43(15), 12580–12589 (1991).
[CrossRef] [PubMed]

Scott, J. F.

R. C. C. Leite, J. F. Scott, and T. C. Damen, “Multiple-phonon resonant Raman scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[CrossRef]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

Skryabin, D. V.

Smith, W. L.

W. L. Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A 15(6), 2396–2403 (1977).
[CrossRef]

Son, H.

Y. Zhang, H. Son, J. Zhang, J. Kong, and Z. J. Liu, “Laser-heating effect on Raman spectra of individual suspended single-walled carbon nanotubes,” PhysChemComm 111, 1988–1992 (2007).

St. J. Russell, P.

Stark, S.

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[CrossRef] [PubMed]

Stentz, A. J.

Stoicheff, B. P.

J. B. Grun, A. K. McQuillan, and B. P. Stoicheff, “Intensity and gain measurements on the stimulated Raman emission in liquid O2 and N2,” Phys. Rev. 180(1), 61–68 (1969).
[CrossRef]

Sun, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

Tong, L.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express 19(11), 10880–10885 (2011).
[CrossRef] [PubMed]

F. Gu, L. Zhang, H. Yu, W. Fang, J. Bao, and L. Tong, “Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation,” Nanotechnology 22(42), 425201 (2011).
[CrossRef] [PubMed]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Z. Zhang, M. Qiu, U. Andersson, and L. Tong, “Subwavelength-diameter silica wire for light in-coupling to silicon-based waveguide,” Chin. Opt. Lett. 5, 577–579 (2007).

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

Tran, T. X.

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[CrossRef] [PubMed]

Turner, A. C.

Venugopal, R.

R. Venugopal, P.-I. Lin, C.-C. Liu, and Y.-T. Chen, “Surface-enhanced raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127(32), 11262–11268 (2005).
[CrossRef] [PubMed]

Wadsworth, W. J.

Wang, F.

A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef] [PubMed]

Wang, P.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express 19(11), 10880–10885 (2011).
[CrossRef] [PubMed]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Windeler, R. S.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37(9), 558–560 (2001).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
[CrossRef] [PubMed]

Wolchover, N. A.

Wu, J.

J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated Raman scattering from short GaP nanowires,” Nano Lett. 9(9), 3252–3257 (2009).
[CrossRef] [PubMed]

Wu, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Xia, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Xu, J.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

Yan, H.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Yan, R.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Yang, G.

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109(51), 24268–24272 (2005).
[CrossRef] [PubMed]

Yang, P.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Yang, Q.

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109(51), 24268–24272 (2005).
[CrossRef] [PubMed]

Yang, Z.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Yeom, D.-I.

Yin, X.

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Yin, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Yu, H.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express 19(11), 10880–10885 (2011).
[CrossRef] [PubMed]

F. Gu, L. Zhang, H. Yu, W. Fang, J. Bao, and L. Tong, “Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation,” Nanotechnology 22(42), 425201 (2011).
[CrossRef] [PubMed]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Zhai, T.

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2(2), 168–187 (2010).
[CrossRef] [PubMed]

Zhang, J.

Y. Zhang, H. Son, J. Zhang, J. Kong, and Z. J. Liu, “Laser-heating effect on Raman spectra of individual suspended single-walled carbon nanotubes,” PhysChemComm 111, 1988–1992 (2007).

Zhang, L.

F. Gu, L. Zhang, H. Yu, W. Fang, J. Bao, and L. Tong, “Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation,” Nanotechnology 22(42), 425201 (2011).
[CrossRef] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Zhang, W. Q.

Zhang, Y.

Y. Zhang, H. Son, J. Zhang, J. Kong, and Z. J. Liu, “Laser-heating effect on Raman spectra of individual suspended single-walled carbon nanotubes,” PhysChemComm 111, 1988–1992 (2007).

Zhang, Z.

Zhao, X. S.

X. S. Zhao, J. Schroeder, P. D. Persans, and T. G. Bilodeau, “Resonant-Raman-scattering and photoluminescence studies in glass-composite and colloidal CdS,” Phys. Rev. B Condens. Matter 43(15), 12580–12589 (1991).
[CrossRef] [PubMed]

Zhu, X.

A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef] [PubMed]

Zhu, Y.

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109(51), 24268–24272 (2005).
[CrossRef] [PubMed]

Zhuang, X.

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 13–33 (2012).
[CrossRef] [PubMed]

Zou, B.

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109(51), 24268–24272 (2005).
[CrossRef] [PubMed]

A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef] [PubMed]

ACS Nano (2)

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano 2(2), 357–367 (2008).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 13–33 (2012).
[CrossRef] [PubMed]

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

K.-Y. Lee, J.-R. Lim, H. Rho, Y.-J. Choi, K. J. Choi, and J.-G. Park, “Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91(20), 201901 (2007).
[CrossRef]

Chin. Opt. Lett. (1)

Electron. Lett. (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37(9), 558–560 (2001).
[CrossRef]

J. Am. Chem. Soc. (2)

R. Venugopal, P.-I. Lin, C.-C. Liu, and Y.-T. Chen, “Surface-enhanced raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127(32), 11262–11268 (2005).
[CrossRef] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109(51), 24268–24272 (2005).
[CrossRef] [PubMed]

Nano Lett. (2)

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated Raman scattering from short GaP nanowires,” Nano Lett. 9(9), 3252–3257 (2009).
[CrossRef] [PubMed]

Nanoscale (1)

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2(2), 168–187 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

F. Gu, L. Zhang, H. Yu, W. Fang, J. Bao, and L. Tong, “Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation,” Nanotechnology 22(42), 425201 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[CrossRef]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

Nature (1)

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at. 532 nm,” Opt. Commun. 190(1-6), 351–356 (2001).
[CrossRef]

Opt. Express (9)

N. A. Wolchover, F. Luan, A. K. George, J. C. Knight, and F. G. Omenetto, “High nonlinearity glass photonic crystal nanowires,” Opt. Express 15(3), 829–833 (2007).
[CrossRef] [PubMed]

M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004).
[CrossRef] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

Y. S. Kivshar, “Nonlinear optics: the next decade,” Opt. Express 16(26), 22126–22128 (2008).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

J. C. Knight and D. V. Skryabin, “Nonlinear waveguide optics and photonic crystal fibers,” Opt. Express 15(23), 15365–15376 (2007).
[CrossRef] [PubMed]

F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express 19(11), 10880–10885 (2011).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. (1)

J. B. Grun, A. K. McQuillan, and B. P. Stoicheff, “Intensity and gain measurements on the stimulated Raman emission in liquid O2 and N2,” Phys. Rev. 180(1), 61–68 (1969).
[CrossRef]

Phys. Rev. A (1)

W. L. Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A 15(6), 2396–2403 (1977).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

X. S. Zhao, J. Schroeder, P. D. Persans, and T. G. Bilodeau, “Resonant-Raman-scattering and photoluminescence studies in glass-composite and colloidal CdS,” Phys. Rev. B Condens. Matter 43(15), 12580–12589 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105(9), 093904 (2010).
[CrossRef] [PubMed]

R. C. C. Leite, J. F. Scott, and T. C. Damen, “Multiple-phonon resonant Raman scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[CrossRef]

PhysChemComm (1)

Y. Zhang, H. Son, J. Zhang, J. Kong, and Z. J. Liu, “Laser-heating effect on Raman spectra of individual suspended single-walled carbon nanotubes,” PhysChemComm 111, 1988–1992 (2007).

Small (1)

A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005).
[CrossRef] [PubMed]

Other (4)

E. D. Palik, Handbook of Optical Constants of Solids (New York, Academic, 1991).

Y. R. Shen, The Principle of Nonlinear Optics (Wiley, New York, 1984).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, Boston, 2003).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, Singapore, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical Raman spectrum of CdS NRs with excitation at 633 nm. Deconvoluted phonon modes (dotted lines) are labeled and assigned.

Fig. 2
Fig. 2

(a) SEM image of a typical CdS NR (200 nm in thickness, 1.2 μm in width). Scale bar, 5 μm. (b) Schematic diagram of the butt-coupling setup. (c) Optical micrograph of coupling a 532 nm laser from a silica fiber taper to a CdS NR (300 nm in thickness, 1.5 μm in width and 200 μm in length) with Pin = 10 nW. Scale bar, 25 μm. (d−i) Optical micrographs of the CdS NR excited with different Pin of 0.07 mW, 0.63 mW, 1.67 mW, 2.33 mW, 2.56 mW, and 2.73 mW, respectively, and these micrographs are all taken with a 532-nm notch filter.

Fig. 3
Fig. 3

Evolution of the output spectra of the CdS NR as Pin increase, obtained with a 532-nm notch filter. (a) Spectra at relatively low Pin condition, where the TPA-PL and the spontaneous Raman scattering are the dominant processes. Inset shows the magnified spectrum of Stokes waves. (b) As Pin further increases, the TPA-PL saturation and the SRS grows quickly. (c) When Pin is above the Raman oscillation threshold, both the Stokes and the anti-Stokes waves show sharp increasing with slightly change of pump power. (d) SC generation from the NR at Pin = 2.73 mW. The notch filter is removed to take this spectrum.

Fig. 4
Fig. 4

Evolution of the output intensities of the CdS NR at different wavelengths from the CdS NR as Pin increase. Four distinct processes are illustrated as: (1) spontaneous Raman scattering, (2) stimulated Raman scattering, (3) Raman oscillation, and (4) saturation, respectively.

Metrics