Abstract

Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Heck, E. J. Salumbides, A. Renault, E. A. Bente, Y. S. Oei, M. K. Smit, R. van Veldhoven, R. Nötzel, K. S. Eikema, and W. Ubachs, “Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 microm,” Opt. Express 17(20), 18063–18075 (2009).
    [CrossRef] [PubMed]
  2. C. Y. Lin, Y. C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester, “Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers,” Opt. Express 17(22), 19739–19748 (2009).
    [CrossRef] [PubMed]
  3. L. Hou, M. Haji, J. Akbar, B. C. Qiu, and A. C. Bryce, “Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers,” Opt. Lett. 36(6), 966–968 (2011).
    [CrossRef] [PubMed]
  4. R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode locked lasers for 1.55 μm applications,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1292–1301 (2011).
    [CrossRef]
  5. K. Sato, “Optical pulse generation using Fabry-Pérot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1288–1293 (2003).
    [CrossRef]
  6. Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, “Mode locking in Fabry-Perot semiconductor lasers,” Phys. Rev. A 65(4), 043807 (2002).
    [CrossRef]
  7. C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 94, 021107 (2009).
    [CrossRef]
  8. Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express 16(14), 10835–10840 (2008).
    [CrossRef] [PubMed]
  9. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
    [CrossRef]
  10. A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72(3), 033808 (2005).
    [CrossRef]
  11. E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88(20), 201102 (2006).
    [CrossRef]
  12. M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, and D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: simulation, analysis and experiments,” IEEE J. Quantum Electron. 47(7), 935–943 (2011).
    [CrossRef]
  13. S. G. Murdoch, R. T. Watts, Y. Q. Xu, R. Maldonado-Basilio, J. Parra-Cetina, S. Latkowski, P. Landais, and L. P. Barry, “Spectral amplitude and phase measurement of a 40 GHz free-running quantum-dash modelocked laser diode,” Opt. Express 19(14), 13628–13635 (2011).
    [CrossRef] [PubMed]
  14. X. Tang, A. S. Karar, J. C. Cartledge, A. Shen, and G. H. Duan, “Characterization of a mode-locked quantum-dash Fabry-Perot laser based on measurement of the complex optical spectrum,” Proc. 35th Eur. Conf. on Optical Commun. P2.21 (2009).
  15. M. Bagnell, J. Davila-Rodriguez, A. Ardey, and P. J. Delfyett, “Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth,” Appl. Phys. Lett. 96(21), 211907 (2010).
    [CrossRef]
  16. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
    [CrossRef]
  17. D. A. Reid, S. G. Murdoch, and L. P. Barry, “Stepped-heterodyne optical complex spectrum analyzer,” Opt. Express 18(19), 19724–19731 (2010).
    [CrossRef] [PubMed]
  18. R. Maldonado-Basilio, J. Parra-Cetina, S. Latkowski, and P. Landais, “Timing-jitter, optical, and mode-beating linewidths analysis on subpicosecond optical pulses generated by a quantum-dash passively mode-locked semiconductor laser,” Opt. Lett. 35(8), 1184–1186 (2010).
    [CrossRef] [PubMed]
  19. A. Akrout, A. Shen, F. Lelarge, F. Pommereau, H. Gariah, F. Blache, G. H. Duan, and A. Ramdane, “Spectrum filtering and pulse compression of quantum-dash mode-locked lasers emitting at 1.55 mm,” Proc. 34th Eur. Conf. on Optical Commun., P2.20 (2008).

2011 (4)

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode locked lasers for 1.55 μm applications,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1292–1301 (2011).
[CrossRef]

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, and D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: simulation, analysis and experiments,” IEEE J. Quantum Electron. 47(7), 935–943 (2011).
[CrossRef]

L. Hou, M. Haji, J. Akbar, B. C. Qiu, and A. C. Bryce, “Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers,” Opt. Lett. 36(6), 966–968 (2011).
[CrossRef] [PubMed]

S. G. Murdoch, R. T. Watts, Y. Q. Xu, R. Maldonado-Basilio, J. Parra-Cetina, S. Latkowski, P. Landais, and L. P. Barry, “Spectral amplitude and phase measurement of a 40 GHz free-running quantum-dash modelocked laser diode,” Opt. Express 19(14), 13628–13635 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (3)

2008 (1)

2007 (1)

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

2006 (1)

E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88(20), 201102 (2006).
[CrossRef]

2005 (1)

A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72(3), 033808 (2005).
[CrossRef]

2003 (1)

K. Sato, “Optical pulse generation using Fabry-Pérot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1288–1293 (2003).
[CrossRef]

2002 (1)

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, “Mode locking in Fabry-Perot semiconductor lasers,” Phys. Rev. A 65(4), 043807 (2002).
[CrossRef]

2000 (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[CrossRef]

Accard, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode locked lasers for 1.55 μm applications,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1292–1301 (2011).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Akbar, J.

Akiyama, K.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, “Mode locking in Fabry-Perot semiconductor lasers,” Phys. Rev. A 65(4), 043807 (2002).
[CrossRef]

Akrout, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode locked lasers for 1.55 μm applications,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1292–1301 (2011).
[CrossRef]

Ardey, A.

M. Bagnell, J. Davila-Rodriguez, A. Ardey, and P. J. Delfyett, “Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth,” Appl. Phys. Lett. 96(21), 211907 (2010).
[CrossRef]

Aubin, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 94, 021107 (2009).
[CrossRef]

Bagnell, M.

M. Bagnell, J. Davila-Rodriguez, A. Ardey, and P. J. Delfyett, “Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth,” Appl. Phys. Lett. 96(21), 211907 (2010).
[CrossRef]

Bandelow, U.

E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88(20), 201102 (2006).
[CrossRef]

Barrios, P. J.

Barry, L. P.

Bente, E. A.

Bimberg, D.

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, and D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: simulation, analysis and experiments,” IEEE J. Quantum Electron. 47(7), 935–943 (2011).
[CrossRef]

Brenot, R.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Bryce, A. C.

Chiragh, F. L.

Dagens, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Davila-Rodriguez, J.

M. Bagnell, J. Davila-Rodriguez, A. Ardey, and P. J. Delfyett, “Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth,” Appl. Phys. Lett. 96(21), 211907 (2010).
[CrossRef]

Delfyett, P. J.

M. Bagnell, J. Davila-Rodriguez, A. Ardey, and P. J. Delfyett, “Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth,” Appl. Phys. Lett. 96(21), 211907 (2010).
[CrossRef]

Derouin, E.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Dijk, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Drisse, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Duan, G.-H.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Eikema, K. S.

Fiol, G.

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, and D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: simulation, analysis and experiments,” IEEE J. Quantum Electron. 47(7), 935–943 (2011).
[CrossRef]

Gosset, C.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 94, 021107 (2009).
[CrossRef]

Gouezigou, O. L.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Haji, M.

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[CrossRef]

Heck, M. J.

Higuchi, H.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, “Mode locking in Fabry-Perot semiconductor lasers,” Phys. Rev. A 65(4), 043807 (2002).
[CrossRef]

Hou, L.

Isu, T.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, “Mode locking in Fabry-Perot semiconductor lasers,” Phys. Rev. A 65(4), 043807 (2002).
[CrossRef]

Landais, P.

Landreau, J.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 94, 021107 (2009).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Latkowski, S.

Lelarge, F.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode locked lasers for 1.55 μm applications,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1292–1301 (2011).
[CrossRef]

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 94, 021107 (2009).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Lester, L. F.

Li, Y.

Lin, C. Y.

Liu, J. R.

Lu, Z. G.

Make, D.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Maldonado-Basilio, R.

Mandel, P.

E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88(20), 201102 (2006).
[CrossRef]

Martinez, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode locked lasers for 1.55 μm applications,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1292–1301 (2011).
[CrossRef]

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 94, 021107 (2009).
[CrossRef]

Merghem, K.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode locked lasers for 1.55 μm applications,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1292–1301 (2011).
[CrossRef]

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 94, 021107 (2009).
[CrossRef]

Moreau, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 94, 021107 (2009).
[CrossRef]

Murdoch, S. G.

Nomura, Y.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, “Mode locking in Fabry-Perot semiconductor lasers,” Phys. Rev. A 65(4), 043807 (2002).
[CrossRef]

Nötzel, R.

Ochi, S.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, “Mode locking in Fabry-Perot semiconductor lasers,” Phys. Rev. A 65(4), 043807 (2002).
[CrossRef]

Oei, Y. S.

Parra-Cetina, J.

Patriarche, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 94, 021107 (2009).
[CrossRef]

Poingt, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Poitras, D.

Pommereau, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Poole, P. J.

Provost, J.-G.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Qiu, B. C.

Radziunas, M.

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, and D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: simulation, analysis and experiments,” IEEE J. Quantum Electron. 47(7), 935–943 (2011).
[CrossRef]

Ramdane, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode locked lasers for 1.55 μm applications,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1292–1301 (2011).
[CrossRef]

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 94, 021107 (2009).
[CrossRef]

Raymond, S.

Reid, D. A.

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Renault, A.

Rosales, R.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode locked lasers for 1.55 μm applications,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1292–1301 (2011).
[CrossRef]

Rousseau, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Salumbides, E. J.

Sato, K.

K. Sato, “Optical pulse generation using Fabry-Pérot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1288–1293 (2003).
[CrossRef]

Schmeckebier, H.

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, and D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: simulation, analysis and experiments,” IEEE J. Quantum Electron. 47(7), 935–943 (2011).
[CrossRef]

Smit, M. K.

Takiguchi, T.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, “Mode locking in Fabry-Perot semiconductor lasers,” Phys. Rev. A 65(4), 043807 (2002).
[CrossRef]

Tomita, N.

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, “Mode locking in Fabry-Perot semiconductor lasers,” Phys. Rev. A 65(4), 043807 (2002).
[CrossRef]

Tourrenc, J.-P.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode locked lasers for 1.55 μm applications,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1292–1301 (2011).
[CrossRef]

Turaev, D.

A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72(3), 033808 (2005).
[CrossRef]

Ubachs, W.

van Veldhoven, R.

Viktorov, E. A.

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, and D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: simulation, analysis and experiments,” IEEE J. Quantum Electron. 47(7), 935–943 (2011).
[CrossRef]

E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88(20), 201102 (2006).
[CrossRef]

Vladimirov, A. G.

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, and D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: simulation, analysis and experiments,” IEEE J. Quantum Electron. 47(7), 935–943 (2011).
[CrossRef]

E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88(20), 201102 (2006).
[CrossRef]

A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72(3), 033808 (2005).
[CrossRef]

Watts, R. T.

Xin, Y. C.

Xu, Y. Q.

Appl. Phys. Lett. (3)

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 94, 021107 (2009).
[CrossRef]

E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88(20), 201102 (2006).
[CrossRef]

M. Bagnell, J. Davila-Rodriguez, A. Ardey, and P. J. Delfyett, “Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth,” Appl. Phys. Lett. 96(21), 211907 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Radziunas, A. G. Vladimirov, E. A. Viktorov, G. Fiol, H. Schmeckebier, and D. Bimberg, “Pulse broadening in quantum-dot mode-locked semiconductor lasers: simulation, analysis and experiments,” IEEE J. Quantum Electron. 47(7), 935–943 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[CrossRef]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode locked lasers for 1.55 μm applications,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1292–1301 (2011).
[CrossRef]

K. Sato, “Optical pulse generation using Fabry-Pérot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1288–1293 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (2)

Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, “Mode locking in Fabry-Perot semiconductor lasers,” Phys. Rev. A 65(4), 043807 (2002).
[CrossRef]

A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72(3), 033808 (2005).
[CrossRef]

Other (2)

A. Akrout, A. Shen, F. Lelarge, F. Pommereau, H. Gariah, F. Blache, G. H. Duan, and A. Ramdane, “Spectrum filtering and pulse compression of quantum-dash mode-locked lasers emitting at 1.55 mm,” Proc. 34th Eur. Conf. on Optical Commun., P2.20 (2008).

X. Tang, A. S. Karar, J. C. Cartledge, A. Shen, and G. H. Duan, “Characterization of a mode-locked quantum-dash Fabry-Perot laser based on measurement of the complex optical spectrum,” Proc. 35th Eur. Conf. on Optical Commun. P2.21 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Light-current characteristics and (b) spectral width at −3dB of the QDash lasers.

Fig. 2
Fig. 2

(a) RF linewidth as a function of injection current and narrowest RF spectra for the (b) 890 μm and (c) 1820 μm long lasers.

Fig. 3
Fig. 3

(a) GD of the 890 μm laser measured at the laser output (red plot) and after 65 m of SMF (black plot) with corresponding (b) optical spectrum and (c) spectral phase at the laser output (red curve) and after 65 m of SMF (black curve) for an injection current of 400 mA.

Fig. 4
Fig. 4

(a) Intensity autocorrelation for the 890 μm laser at the laser output (red curve) and after 65 m of SMF (black curve) with corresponding (b) reconstructed field intensity profiles at the laser output (red curve) and after 65 m of SMF (black curve) when driven with 400 mA.

Fig. 5
Fig. 5

(a) GD of the 1820 μm laser at the laser output with corresponding (b) optical spectrum and (c) spectral phase profile when driven with 400 mA.

Fig. 6
Fig. 6

(a) Measured GDD as a function of injection current for both lasers. (b) Calculated pulse width as a function of number of modes at −3 dB for different values of GDD for the 890 μm laser.

Fig. 7
Fig. 7

(a) GD of the two-section 890 μm laser measured at the laser output with corresponding (b) optical spectrum and (c) spectral phase profile under 70 mA of injection current and −1.5 V of applied reverse bias.

Fig. 8
Fig. 8

(a) Intensity autocorrelation for the two-section 890 μm laser at the laser output with corresponding (b) reconstructed field intensity profile for an injection current of 70 mA and reverse bias of −1.5 V.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E( t )=[ n=1 N E n e j[ ω n t+ θ n ( t )+ ϕ n ] ]+c.c
d dt [ ( 2 ω n+1 ω n ω n+2 )t+2 θ n+1 ( t ) θ n ( t ) θ n+2 ( t )+2 ϕ n+1 ϕ n ϕ n+2 ]=0
θ n+1 ( t ) θ n ( t )=Δθ( t )
ω n+1 ω n = ω r
I(t) | E( t ) | 2 = m=1 N1 l=1 Nm 2 E m+l E l cos [ m ω r ( t+Δ t r ( t ) )+( ϕ m+l ϕ l ) ] + m=1 N E m 2
Ψ( n )=2 ϕ n+1 ϕ n ϕ n+2 = Φ n for n[ 1,N2 ]
Ψ( n ) dn= ϕ n+1 ϕ n =Φn+α for n[ 1,N1 ]
dn Ψ( n ) dn = ϕ n =Φ n 2 /2+αn+β for n[ 1,N ]
dϕ( ω ) dω =Φω/ ω r 2
d 2 ϕ( ω ) d ω 2 =Φ/ ω r 2

Metrics