Abstract

We design a dual-view liquid crystal display (DVLCD) which display two different images in the left and right viewing directions simultaneously. The main-pixel of the DVLCD comprises the right sub-pixels (RSPs) and the left sub-pixels (LSPs). The LCs in the RSPs and the LSPs have the opposite rotation directions, which are controlled by the inclined electric fields provided by the patterned electrodes. Addressing the RSPs and LSPs with the voltages having different polarities effectively decreases the maximum operation voltage of the DVLCD. The proposed DVLCD is free of the complicate multiple-step rubbing and shadow mask treatments, and hence has the advantages of low cost and easy fabrication.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. U. Kean, D. J. Montgomery, G. Bourhill, and J. Mather, “Multiple view display,” US patent 7154653B2 (2006).
  2. M. P. C. M. Krijn, S. T. de Zwart, D. K. G. De Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
    [CrossRef]
  3. C. P. Chen, J. H. Lee, T. H. Yoon, and J. C. Kim, “Monoview/dual-view switchable liquid crystal display,” Opt. Lett. 34(14), 2222–2224 (2009).
    [CrossRef] [PubMed]
  4. T. J. Scheffer and J. Nehring, “Accurate determination of liquid crystal tilt bias angles,” J. Appl. Phys. 48(5), 1783–1792 (1977).
    [CrossRef]
  5. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).
  6. D. K. Yang and S. T. Wu, Fundamental of Liquid Crystal Devices (Wiley, 2006).
  7. S. H. Perlmutter, D. Doroski, and G. Moddel, “Degradation of liquid crystal device performance due to selective adsorption of ions,” Appl. Phys. Lett. 69(9), 1182–1184 (1996).
    [CrossRef]

2009

2008

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. De Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

1996

S. H. Perlmutter, D. Doroski, and G. Moddel, “Degradation of liquid crystal device performance due to selective adsorption of ions,” Appl. Phys. Lett. 69(9), 1182–1184 (1996).
[CrossRef]

1977

T. J. Scheffer and J. Nehring, “Accurate determination of liquid crystal tilt bias angles,” J. Appl. Phys. 48(5), 1783–1792 (1977).
[CrossRef]

Chen, C. P.

De Boer, D. K. G.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. De Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

de Zwart, S. T.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. De Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

Doroski, D.

S. H. Perlmutter, D. Doroski, and G. Moddel, “Degradation of liquid crystal device performance due to selective adsorption of ions,” Appl. Phys. Lett. 69(9), 1182–1184 (1996).
[CrossRef]

Kim, J. C.

Krijn, M. P. C. M.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. De Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

Lee, J. H.

Moddel, G.

S. H. Perlmutter, D. Doroski, and G. Moddel, “Degradation of liquid crystal device performance due to selective adsorption of ions,” Appl. Phys. Lett. 69(9), 1182–1184 (1996).
[CrossRef]

Nehring, J.

T. J. Scheffer and J. Nehring, “Accurate determination of liquid crystal tilt bias angles,” J. Appl. Phys. 48(5), 1783–1792 (1977).
[CrossRef]

Perlmutter, S. H.

S. H. Perlmutter, D. Doroski, and G. Moddel, “Degradation of liquid crystal device performance due to selective adsorption of ions,” Appl. Phys. Lett. 69(9), 1182–1184 (1996).
[CrossRef]

Scheffer, T. J.

T. J. Scheffer and J. Nehring, “Accurate determination of liquid crystal tilt bias angles,” J. Appl. Phys. 48(5), 1783–1792 (1977).
[CrossRef]

Sluijter, M.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. De Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

Willemsen, O. H.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. De Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

Yoon, T. H.

Appl. Phys. Lett.

S. H. Perlmutter, D. Doroski, and G. Moddel, “Degradation of liquid crystal device performance due to selective adsorption of ions,” Appl. Phys. Lett. 69(9), 1182–1184 (1996).
[CrossRef]

J. Appl. Phys.

T. J. Scheffer and J. Nehring, “Accurate determination of liquid crystal tilt bias angles,” J. Appl. Phys. 48(5), 1783–1792 (1977).
[CrossRef]

J. Soc. Inf. Disp.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. De Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

Opt. Lett.

Other

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

D. K. Yang and S. T. Wu, Fundamental of Liquid Crystal Devices (Wiley, 2006).

D. U. Kean, D. J. Montgomery, G. Bourhill, and J. Mather, “Multiple view display,” US patent 7154653B2 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a)Basic LC cell with a pair of the quarter waveplates attached on it, and (b) tile angle-dependent transmittance of the basic LC cell plotted in (a).

Fig. 2
Fig. 2

(a) Incident angle (θ)-dependent transmittances of a pair of polarizers under the configuration of (45°, 135°) and (43°, 137°), respectively; (b) and (c) Iso-transmittance contours of a pair of polarizers under the configurations of (45°, 135°) and (43°, 137°), respectively.

Fig. 3
Fig. 3

Main-pixel structure of the proposed PE-DVLCD.

Fig. 4
Fig. 4

Calculated V-T curves of a main-pixel of the PE-DVLCD at the ± 30° viewing directions. In the calculation, the RSPs are addressed but the LSPs are kept at zero voltage.

Fig. 5
Fig. 5

Position-dependent transmittance of the PE-DVLCD. In the calculation, the LSPs and the RSPs are simultaneously addressed at 6.5 V.

Fig. 6
Fig. 6

Iso-transmittance contours of the PE-DVLCD at (a) the bright state and (b) the dark state; (c) iso-CR contour of the PE-DVLCD; (d) iso-CR contour of the Chens’ DVLCD.

Fig. 7
Fig. 7

Driving schemes of the PE-DVLCD. (a) VL and VR have the same polarity; (b) VL and VR have the different polarities.

Tables (1)

Tables Icon

Table 1 LC Parameters Used in this Paper

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ LC (θ,α, d LC ) =2π d LC λ [ 1 c 2 ( a 2 b 2 )sinαcosαsinθ+ 1 c ( 1 a 2 b 2 c 2 sin 2 θ ) 1/2 1 b ( 1 b 2 sin 2 θ ) 1/2 ],
δ( θ,α, d LC )= δ LC ( θ,α, d LC )π.
T( θ,α, d LC )= 1 2 cos 2 ( 1 2 δ( θ,α, d LC ) ).
XTR= T max | unintended T max | intended .

Metrics