Abstract

Transition-metal oxides, such as RuO2, offer an exciting alternative to conventional metals for metamaterials and plasmonic applications due to their low optical losses in the visible and near-infrared ranges. In this manuscript we report observation of optically excited surface plasmon polaritons (SPPs) and bulk plasmons in RuO2 thin films grown using DC reactive magnetron sputtering on glass and TiO2 (001) substrates. We show that both plasmon modes can exist simultaneously for the infrared region of the optical spectrum, while only the bulk plasmons are supported at higher optical frequencies. Finally, we demonstrate that the film properties can be tailored to favor excitation of either SPP or bulk plasmons.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dominici, F. Michelotti, T. M. Brown, A. Reale, and A. Di Carlo, “Plasmon polaritons in the near infrared on fluorine doped tin oxide films,” Opt. Express17(12), 10155–10167 (2009).
    [CrossRef]
  2. K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron.23(1), 1–27 (1991).
    [CrossRef]
  3. J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.)20(6), 1211–1217 (2008).
    [CrossRef]
  4. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
    [CrossRef]
  5. G. X. Li, Z. L. Wang, S. M. Chen, and K. W. Cheah, “Narrowband plasmonic excitation on gold hole-array nanostructures observed using spectroscopic ellipsometer,” Opt. Express19, 6356–6361 (2011).
  6. Y. W. Cao, R. Jin, and C. A. Mirkin, “DNA-modified core-shell Ag/Au nanoparticles,” J. Am. Chem. Soc.123(32), 7961–7962 (2001).
    [CrossRef]
  7. R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express17(22), 19459–19469 (2009).
    [CrossRef]
  8. I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
    [CrossRef]
  9. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
    [CrossRef]
  10. G. V. Naik and A. Boltasseva; “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.)5(1), 1–7 (2011).
    [CrossRef]
  11. C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic field modulation of intense surface plasmon polaritons,” Opt. Express18(8), 7743–7752 (2010).
    [CrossRef]
  12. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011).
    [CrossRef]
  13. R. Won, “View from...NANOMETA 2011: In search of new materials,” Nat. Photonics5(3), 139–140 (2011).
    [CrossRef]
  14. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
    [CrossRef]
  15. W. DiPippo, B. J. Lee, and K. Park, “Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range,” Opt. Express18(18), 19396–19406 (2010).
    [CrossRef]
  16. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
    [CrossRef]
  17. P. F. Robusto and R. Braunstein, “Optical measurements of the surface-plasmon of indium tin oxide,” Phys. Status Solidi A119(1), 155–168 (1990).
    [CrossRef]
  18. C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
    [CrossRef]
  19. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
    [CrossRef]
  20. R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized Aluminum films,” Phys. Rev. B11(8), 3116–3123 (1975).
    [CrossRef]
  21. C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, “Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors,” Nano Lett.6(12), 2690–2695 (2006).
    [CrossRef]
  22. L. F. Mattheiss, “Electronic structure of RuO2, OsO2, and IrO2,” Phys. Rev. B13(6), 2433–2450 (1976).
    [CrossRef]
  23. K. Glassford and J. Chelikowsky, “Electron transport properties in RuO2 rutile,” Phys. Rev. B49(11), 7107–7114 (1994).
    [CrossRef]
  24. P. Hones, T. Gerfin, and M. Gratzel, “Spectroscopic ellipsometry of RuO2 films prepared by metalorganic chemical vapor deposition,” Appl. Phys. Lett.67(21), 3078–3080 (1995).
    [CrossRef]
  25. D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).
  26. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmon excited by light,” Z. Naturforsch.23a, 2135–2136 (1968).
  27. H. S. Nalwa, Handbook of Thin Film Materials: Semiconductor and Superconductor Thin Films (Academic, 2002).
  28. S. K. Hong, H. J. Kim, and H. G. Yang, “Stress measurements of radio-frequency reactively sputtered RuO2 thin films,” J. Appl. Phys.80(2), 822–826 (1996).
    [CrossRef]
  29. J. H. Huang and J. S. Chen, “Material characteristics and electrical property of reactively sputtered RuO2 thin films,” Thin Solid Films382(1-2), 139–145 (2001).
    [CrossRef]
  30. A. K. Goel, G. Skorinko, and F. H. Pollak, “Optical properties of single-crystal rutile RuO2 and IrO2 in the range 0.5 to 9.5 eV,” Phys. Rev. B24(12), 7342–7350 (1981).
    [CrossRef]
  31. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B53(8), 4265–4274 (1996).
    [CrossRef]
  32. M. Schubert, T. E. Tiwald, and J. A. Woollam, “Explicit solutions for the optical properties of arbitrary magneto-optic materials in generalized ellipsometry,” Appl. Opt.38(1), 177–187 (1999).
    [CrossRef]

2011

G. X. Li, Z. L. Wang, S. M. Chen, and K. W. Cheah, “Narrowband plasmonic excitation on gold hole-array nanostructures observed using spectroscopic ellipsometer,” Opt. Express19, 6356–6361 (2011).

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef]

G. V. Naik and A. Boltasseva; “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.)5(1), 1–7 (2011).
[CrossRef]

R. Won, “View from...NANOMETA 2011: In search of new materials,” Nat. Photonics5(3), 139–140 (2011).
[CrossRef]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011).
[CrossRef]

2010

2009

2008

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.)20(6), 1211–1217 (2008).
[CrossRef]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

2007

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef]

2006

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
[CrossRef]

C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, “Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors,” Nano Lett.6(12), 2690–2695 (2006).
[CrossRef]

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

2005

I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef]

2004

D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).

2001

J. H. Huang and J. S. Chen, “Material characteristics and electrical property of reactively sputtered RuO2 thin films,” Thin Solid Films382(1-2), 139–145 (2001).
[CrossRef]

Y. W. Cao, R. Jin, and C. A. Mirkin, “DNA-modified core-shell Ag/Au nanoparticles,” J. Am. Chem. Soc.123(32), 7961–7962 (2001).
[CrossRef]

1999

1996

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B53(8), 4265–4274 (1996).
[CrossRef]

S. K. Hong, H. J. Kim, and H. G. Yang, “Stress measurements of radio-frequency reactively sputtered RuO2 thin films,” J. Appl. Phys.80(2), 822–826 (1996).
[CrossRef]

1995

P. Hones, T. Gerfin, and M. Gratzel, “Spectroscopic ellipsometry of RuO2 films prepared by metalorganic chemical vapor deposition,” Appl. Phys. Lett.67(21), 3078–3080 (1995).
[CrossRef]

1994

K. Glassford and J. Chelikowsky, “Electron transport properties in RuO2 rutile,” Phys. Rev. B49(11), 7107–7114 (1994).
[CrossRef]

1991

K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron.23(1), 1–27 (1991).
[CrossRef]

1990

P. F. Robusto and R. Braunstein, “Optical measurements of the surface-plasmon of indium tin oxide,” Phys. Status Solidi A119(1), 155–168 (1990).
[CrossRef]

1981

A. K. Goel, G. Skorinko, and F. H. Pollak, “Optical properties of single-crystal rutile RuO2 and IrO2 in the range 0.5 to 9.5 eV,” Phys. Rev. B24(12), 7342–7350 (1981).
[CrossRef]

1976

L. F. Mattheiss, “Electronic structure of RuO2, OsO2, and IrO2,” Phys. Rev. B13(6), 2433–2450 (1976).
[CrossRef]

1975

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized Aluminum films,” Phys. Rev. B11(8), 3116–3123 (1975).
[CrossRef]

1968

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmon excited by light,” Z. Naturforsch.23a, 2135–2136 (1968).

Aroeti, B.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
[CrossRef]

Aspnes, D. E.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef]

Biener, J.

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.)20(6), 1211–1217 (2008).
[CrossRef]

Biener, M. M.

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.)20(6), 1211–1217 (2008).
[CrossRef]

Boltasseva, A.

G. V. Naik and A. Boltasseva; “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.)5(1), 1–7 (2011).
[CrossRef]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011).
[CrossRef]

Braunstein, R.

P. F. Robusto and R. Braunstein, “Optical measurements of the surface-plasmon of indium tin oxide,” Phys. Status Solidi A119(1), 155–168 (1990).
[CrossRef]

Brown, T. M.

Búc, D.

D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).

Cao, Y. W.

Y. W. Cao, R. Jin, and C. A. Mirkin, “DNA-modified core-shell Ag/Au nanoparticles,” J. Am. Chem. Soc.123(32), 7961–7962 (2001).
[CrossRef]

Caplovicová, M.

D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).

Cerruti, M.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

Chang, K. H.

C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, “Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors,” Nano Lett.6(12), 2690–2695 (2006).
[CrossRef]

Cheah, K. W.

G. X. Li, Z. L. Wang, S. M. Chen, and K. W. Cheah, “Narrowband plasmonic excitation on gold hole-array nanostructures observed using spectroscopic ellipsometer,” Opt. Express19, 6356–6361 (2011).

Chelikowsky, J.

K. Glassford and J. Chelikowsky, “Electron transport properties in RuO2 rutile,” Phys. Rev. B49(11), 7107–7114 (1994).
[CrossRef]

Chen, J. S.

J. H. Huang and J. S. Chen, “Material characteristics and electrical property of reactively sputtered RuO2 thin films,” Thin Solid Films382(1-2), 139–145 (2001).
[CrossRef]

Chen, S. M.

G. X. Li, Z. L. Wang, S. M. Chen, and K. W. Cheah, “Narrowband plasmonic excitation on gold hole-array nanostructures observed using spectroscopic ellipsometer,” Opt. Express19, 6356–6361 (2011).

Clavero, C.

Davidov, D.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
[CrossRef]

Di Carlo, A.

DiPippo, W.

Dominici, L.

Duscher, G.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Efremenko, A.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

El-Sayed, I. H.

I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef]

El-Sayed, M. A.

I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef]

Franzen, S.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Gerfin, T.

P. Hones, T. Gerfin, and M. Gratzel, “Spectroscopic ellipsometry of RuO2 films prepared by metalorganic chemical vapor deposition,” Appl. Phys. Lett.67(21), 3078–3080 (1995).
[CrossRef]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

Glassford, K.

K. Glassford and J. Chelikowsky, “Electron transport properties in RuO2 rutile,” Phys. Rev. B49(11), 7107–7114 (1994).
[CrossRef]

Goel, A. K.

A. K. Goel, G. Skorinko, and F. H. Pollak, “Optical properties of single-crystal rutile RuO2 and IrO2 in the range 0.5 to 9.5 eV,” Phys. Rev. B24(12), 7342–7350 (1981).
[CrossRef]

Gratzel, M.

P. Hones, T. Gerfin, and M. Gratzel, “Spectroscopic ellipsometry of RuO2 films prepared by metalorganic chemical vapor deposition,” Appl. Phys. Lett.67(21), 3078–3080 (1995).
[CrossRef]

Hamza, A. V.

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.)20(6), 1211–1217 (2008).
[CrossRef]

Helmersson, U.

D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).

Hodge, A. M.

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.)20(6), 1211–1217 (2008).
[CrossRef]

Hones, P.

P. Hones, T. Gerfin, and M. Gratzel, “Spectroscopic ellipsometry of RuO2 films prepared by metalorganic chemical vapor deposition,” Appl. Phys. Lett.67(21), 3078–3080 (1995).
[CrossRef]

Hong, S. K.

S. K. Hong, H. J. Kim, and H. G. Yang, “Stress measurements of radio-frequency reactively sputtered RuO2 thin films,” J. Appl. Phys.80(2), 822–826 (1996).
[CrossRef]

Hu, C. C.

C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, “Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors,” Nano Lett.6(12), 2690–2695 (2006).
[CrossRef]

Huang, J. H.

J. H. Huang and J. S. Chen, “Material characteristics and electrical property of reactively sputtered RuO2 thin films,” Thin Solid Films382(1-2), 139–145 (2001).
[CrossRef]

Huang, X. H.

I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef]

Jin, P.

D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).

Jin, R.

Y. W. Cao, R. Jin, and C. A. Mirkin, “DNA-modified core-shell Ag/Au nanoparticles,” J. Am. Chem. Soc.123(32), 7961–7962 (2001).
[CrossRef]

Kim, H. J.

S. K. Hong, H. J. Kim, and H. G. Yang, “Stress measurements of radio-frequency reactively sputtered RuO2 thin films,” J. Appl. Phys.80(2), 822–826 (1996).
[CrossRef]

Kim, J.

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmon excited by light,” Z. Naturforsch.23a, 2135–2136 (1968).

Laughlin, B.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Lee, B. J.

Leonard, D. N.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Li, G. X.

G. X. Li, Z. L. Wang, S. M. Chen, and K. W. Cheah, “Narrowband plasmonic excitation on gold hole-array nanostructures observed using spectroscopic ellipsometer,” Opt. Express19, 6356–6361 (2011).

Li, K. Y.

D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).

Lin, M. C.

C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, “Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors,” Nano Lett.6(12), 2690–2695 (2006).
[CrossRef]

Lirtsman, V.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
[CrossRef]

Losego, M.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Lukaszew, R. A.

Maier, S. A.

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.)20(6), 1211–1217 (2008).
[CrossRef]

Maria, J. P.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Mattheiss, L. F.

L. F. Mattheiss, “Electronic structure of RuO2, OsO2, and IrO2,” Phys. Rev. B13(6), 2433–2450 (1976).
[CrossRef]

Michelotti, F.

Mikula, M.

D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).

Mirkin, C. A.

Y. W. Cao, R. Jin, and C. A. Mirkin, “DNA-modified core-shell Ag/Au nanoparticles,” J. Am. Chem. Soc.123(32), 7961–7962 (2001).
[CrossRef]

Music, D.

D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).

Naik, G. V.

G. V. Naik and A. Boltasseva; “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.)5(1), 1–7 (2011).
[CrossRef]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011).
[CrossRef]

Nakao, S.

D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).

Nyce, G. W.

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.)20(6), 1211–1217 (2008).
[CrossRef]

Park, K.

Park, W.

Pettit, R. B.

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized Aluminum films,” Phys. Rev. B11(8), 3116–3123 (1975).
[CrossRef]

Pollak, F. H.

A. K. Goel, G. Skorinko, and F. H. Pollak, “Optical properties of single-crystal rutile RuO2 and IrO2 in the range 0.5 to 9.5 eV,” Phys. Rev. B24(12), 7342–7350 (1981).
[CrossRef]

Pratibha, R.

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmon excited by light,” Z. Naturforsch.23a, 2135–2136 (1968).

Reale, A.

Rhodes, C.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

Robusto, P. F.

P. F. Robusto and R. Braunstein, “Optical measurements of the surface-plasmon of indium tin oxide,” Phys. Status Solidi A119(1), 155–168 (1990).
[CrossRef]

Schubert, M.

M. Schubert, T. E. Tiwald, and J. A. Woollam, “Explicit solutions for the optical properties of arbitrary magneto-optic materials in generalized ellipsometry,” Appl. Opt.38(1), 177–187 (1999).
[CrossRef]

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B53(8), 4265–4274 (1996).
[CrossRef]

Shum, P. W.

D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).

Silcox, J.

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized Aluminum films,” Phys. Rev. B11(8), 3116–3123 (1975).
[CrossRef]

Skorinko, G.

A. K. Goel, G. Skorinko, and F. H. Pollak, “Optical properties of single-crystal rutile RuO2 and IrO2 in the range 0.5 to 9.5 eV,” Phys. Rev. B24(12), 7342–7350 (1981).
[CrossRef]

Skuza, J. R.

Smalyukh, I. I.

Tiwald, T. E.

Vincent, R.

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized Aluminum films,” Phys. Rev. B11(8), 3116–3123 (1975).
[CrossRef]

Wang, Z. L.

G. X. Li, Z. L. Wang, S. M. Chen, and K. W. Cheah, “Narrowband plasmonic excitation on gold hole-array nanostructures observed using spectroscopic ellipsometer,” Opt. Express19, 6356–6361 (2011).

Weibel, S.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Welford, K.

K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron.23(1), 1–27 (1991).
[CrossRef]

Won, R.

R. Won, “View from...NANOMETA 2011: In search of new materials,” Nat. Photonics5(3), 139–140 (2011).
[CrossRef]

Woollam, J. A.

Wu, Y. T.

C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, “Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors,” Nano Lett.6(12), 2690–2695 (2006).
[CrossRef]

Yang, H. G.

S. K. Hong, H. J. Kim, and H. G. Yang, “Stress measurements of radio-frequency reactively sputtered RuO2 thin films,” J. Appl. Phys.80(2), 822–826 (1996).
[CrossRef]

Yang, K.

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

Zhou, Z.

D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).

Ziblat, R.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. (Deerfield Beach Fla.)20(6), 1211–1217 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Hones, T. Gerfin, and M. Gratzel, “Spectroscopic ellipsometry of RuO2 films prepared by metalorganic chemical vapor deposition,” Appl. Phys. Lett.67(21), 3078–3080 (1995).
[CrossRef]

Biophys. J.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006).
[CrossRef]

J. Am. Chem. Soc.

Y. W. Cao, R. Jin, and C. A. Mirkin, “DNA-modified core-shell Ag/Au nanoparticles,” J. Am. Chem. Soc.123(32), 7961–7962 (2001).
[CrossRef]

J. Appl. Phys.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008).
[CrossRef]

S. K. Hong, H. J. Kim, and H. G. Yang, “Stress measurements of radio-frequency reactively sputtered RuO2 thin films,” J. Appl. Phys.80(2), 822–826 (1996).
[CrossRef]

J. Electric. Eng.

D. Búc, M. Mikula, D. Music, U. Helmersson, P. Jin, S. Nakao, K. Y. Li, P. W. Shum, Z. Zhou, and M. Čaplovičová, “Ruthenium oxide films prepared by reactive unbalanced magnetron sputtering,” J. Electric. Eng.55, 39–42 (2004).

Metamaterials (Amst.)

G. V. Naik and A. Boltasseva; “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.)5(1), 1–7 (2011).
[CrossRef]

Nano Lett.

I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef]

C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, “Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors,” Nano Lett.6(12), 2690–2695 (2006).
[CrossRef]

Nat. Photonics

R. Won, “View from...NANOMETA 2011: In search of new materials,” Nat. Photonics5(3), 139–140 (2011).
[CrossRef]

Nat. Phys.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

Opt. Express

Opt. Mater. Express

Opt. Quantum Electron.

K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron.23(1), 1–27 (1991).
[CrossRef]

Phys. Rev. B

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized Aluminum films,” Phys. Rev. B11(8), 3116–3123 (1975).
[CrossRef]

L. F. Mattheiss, “Electronic structure of RuO2, OsO2, and IrO2,” Phys. Rev. B13(6), 2433–2450 (1976).
[CrossRef]

K. Glassford and J. Chelikowsky, “Electron transport properties in RuO2 rutile,” Phys. Rev. B49(11), 7107–7114 (1994).
[CrossRef]

A. K. Goel, G. Skorinko, and F. H. Pollak, “Optical properties of single-crystal rutile RuO2 and IrO2 in the range 0.5 to 9.5 eV,” Phys. Rev. B24(12), 7342–7350 (1981).
[CrossRef]

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B53(8), 4265–4274 (1996).
[CrossRef]

Phys. Status Solidi A

P. F. Robusto and R. Braunstein, “Optical measurements of the surface-plasmon of indium tin oxide,” Phys. Status Solidi A119(1), 155–168 (1990).
[CrossRef]

Science

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef]

Thin Solid Films

J. H. Huang and J. S. Chen, “Material characteristics and electrical property of reactively sputtered RuO2 thin films,” Thin Solid Films382(1-2), 139–145 (2001).
[CrossRef]

Z. Naturforsch.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmon excited by light,” Z. Naturforsch.23a, 2135–2136 (1968).

Other

H. S. Nalwa, Handbook of Thin Film Materials: Semiconductor and Superconductor Thin Films (Academic, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

RHEED images show polycrystalline structure of RuO2 deposited on glass (a) and single crystalline structure of RuO2 deposited on a TiO2 (001) substrate along the TiO2 [100] direction (b) and [110] direction (c).

Fig. 2
Fig. 2

(a) XRD symmetric scans for Series I samples (RuO2 deposited on TiO2 (001) substrates with similar film thickness around 30 nm under different O2 partial pressure conditions). The continuous vertical line shows the position of the bulk RuO2 (002) peak. The small connected vertical lines show the RuO2 (002) peaks positions for the different samples. The film grown at O2 partial pressure of 0.04 mTorr shows the RuO2 (002) peak position nearest to the expected bulk peak values. (b) Sheet resistance measured from four-point probe and lattice parameter extracted from XRD data of Series I samples. Dash line stands for the lattice parameter c for single crystal RuO2.

Fig. 3
Fig. 3

(a) Real ε' and (b) imaginary ε" parts of the dielectric function for the RuO2 thin films deposited on TiO2 (001) substrates under different O2 partial pressures in Series I. The dielectric functions of RuO2 single crystal (Ref. [30]) are included for comparison.

Fig. 4
Fig. 4

(a) Dispersion relation curves corresponding to bulk and surface plasmon modes, as shown in Eqs. (1) and (2). A shadowed region is bounded by the light lines in air and in glass. Dispersion relations are plotted versus the real part of the in-plane wave vector k. (b) Simulated reflectance map for the three layer model with glass, 30 nm thick RuO2 film and air. Light is incident from the glass side, in the domain E[0.12eV,3eV] - θ[ 0 , 90 ] . Reflectance in Fig. 4(b) is plotted in log scale to enhance picture contrast. High reflectance areas are shown as brighter, while low ones appear darker.

Fig. 5
Fig. 5

Experimental (dots) and simulated (lines) angular reflectance dependence for 30 nm RuO2 thin films deposited on TiO2 (001) (a, b) and glass substrates (c, d) measured with IR and red laser. Experimental reflectance and simulation results of glass and TiO2 (001) substrate are also included as comparisons. Better agreements between simulations and experimental measurements are obtained for the single crystalline RuO2 on TiO2 (001) compared to the polycrystalline RuO2 on glass.

Fig. 6
Fig. 6

Experimental angular dependence of the reflectance for Series I (30 nm RuO2 thin films deposited on TiO2 (001) substrates at different O2 partial pressures) illuminated by IR laser (a) and red laser (b). RuO2 deposited at O2 partial pressure of 0.04 mTorr shows the strongest SPPs as well as bulk polaritons in the IR region and bulk polaritons in the visible red region.

Fig. 7
Fig. 7

Experimental angular dependence of the reflectance for Series II (RuO2 thin films deposited on TiO2 (001) substrates with O2 partial pressure of 0.04 mTorr and different film thicknesses) illuminated by IR laser (a) and red laser (b), and corresponding simulation results (c, d). In the IR region, a 30 nm thick film shows the strongest absorption, while in the visible red region, a 73 nm thick film shows the strongest absorption. Simultaneous SPPs and bulk modes are observed in the IR region. Excellent agreement is achieved between experimental data and simulations.

Fig. 8
Fig. 8

Experimental (a) and simulated (b) angular dependence of the reflectance for a 73 nm RuO2 thin film deposited on TiO2 (001) substrate illuminated at different wavelengths ranging from 800 nm to 1000 nm. Only the bulk mode is observed in the visible region while simultaneous bulk and SPP modes are observed in the IR region.

Tables (1)

Tables Icon

Table 1 Average grain size, planes spacing d (002) and lattice parameter c of RuO2 thin films deposited on TiO2 (001) substrates in Series I from XRD analysis

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

q 1,2 = ω c ε 1,2 (E)
k= ω c ε 1 (E) ε 2 (E) ε 1 (E)+ ε 2 (E)

Metrics