Abstract

A novel device for self-mixing interference measurement based on the fiber ring laser with ultra-narrow linewidth was investigated for the first time. In order to achieve requirement of our measurement system, a saturable-absorber which consists of a segment un-pumped erbium-doped fiber and a fiber Bragg grating is employed to provide a fine mode selection and guarantee the ultra-narrow linewidth operation. Results demonstrate that the signal-to-noise ratio of the self-mixing interference signal could be enhanced from 18.01 dB to 38.35 dB by inserting a saturable-absorber in the laser cavity. It is in good agreement with the theoretical analysis and proved potential using in self-mixing interference measurement system for high sensitivity and remote measurement.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt.25(9), 1417–1419 (1986).
    [CrossRef] [PubMed]
  2. L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas.53(1), 223–232 (2004).
    [CrossRef]
  3. K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett.27(15), 1339–1341 (2002).
    [CrossRef] [PubMed]
  4. F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt.37(28), 6684–6689 (1998).
    [CrossRef] [PubMed]
  5. N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas.46(4), 847–850 (1997).
    [CrossRef]
  6. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt.32(9), 1551–1558 (1993).
    [CrossRef] [PubMed]
  7. K. Otsuka, “Ultrahigh sensitivity laser Doppler velocimetry with a microchip solid-state laser,” Appl. Opt.33(6), 1111–1114 (1994).
    [CrossRef] [PubMed]
  8. Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakić, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express17(7), 5517–5525 (2009).
    [CrossRef] [PubMed]
  9. D. Han, M. Wang, and J. Zhou, “Self-mixing speckle interference in DFB lasers,” Opt. Express14(8), 3312–3317 (2006).
    [CrossRef] [PubMed]
  10. J. Zhou, M. Wang, and D. Han, “Experiment observation of self-mixing interference in distributed feedback laser,” Opt. Express14(12), 5301–5306 (2006).
    [CrossRef] [PubMed]
  11. L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett.24(5), 392–394 (2012).
    [CrossRef]
  12. P. D. Dragic, “Analytical model for injection-seeded erbium-doped fiber ring lasers,” IEEE Photon. Technol. Lett.17(8), 1629–1631 (2005).
    [CrossRef]
  13. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
    [CrossRef]
  14. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

2012

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett.24(5), 392–394 (2012).
[CrossRef]

2009

2006

2005

P. D. Dragic, “Analytical model for injection-seeded erbium-doped fiber ring lasers,” IEEE Photon. Technol. Lett.17(8), 1629–1631 (2005).
[CrossRef]

2004

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas.53(1), 223–232 (2004).
[CrossRef]

2002

1998

1997

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas.46(4), 847–850 (1997).
[CrossRef]

1994

K. Otsuka, “Ultrahigh sensitivity laser Doppler velocimetry with a microchip solid-state laser,” Appl. Opt.33(6), 1111–1114 (1994).
[CrossRef] [PubMed]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

1993

1986

Abe, K.

Bertling, K.

Bosch, T.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas.53(1), 223–232 (2004).
[CrossRef]

F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt.37(28), 6684–6689 (1998).
[CrossRef] [PubMed]

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas.46(4), 847–850 (1997).
[CrossRef]

Boyle, W. J. O.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt.32(9), 1551–1558 (1993).
[CrossRef] [PubMed]

Cao, Z.

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett.24(5), 392–394 (2012).
[CrossRef]

Dai, J.

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett.24(5), 392–394 (2012).
[CrossRef]

Dragic, P. D.

P. D. Dragic, “Analytical model for injection-seeded erbium-doped fiber ring lasers,” IEEE Photon. Technol. Lett.17(8), 1629–1631 (2005).
[CrossRef]

Giuliani, G.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas.53(1), 223–232 (2004).
[CrossRef]

Gouaux, F.

Grattan, K. T. V.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt.32(9), 1551–1558 (1993).
[CrossRef] [PubMed]

Han, D.

Kliese, R.

Ko, J.-Y.

Lescure, M.

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas.46(4), 847–850 (1997).
[CrossRef]

Lim, T.-S.

Lim, Y. L.

Lu, L.

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett.24(5), 392–394 (2012).
[CrossRef]

Mochizuki, A.

Nikolic, M.

Otsuka, K.

Palmer, A. W.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt.32(9), 1551–1558 (1993).
[CrossRef] [PubMed]

Plantier, G.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas.53(1), 223–232 (2004).
[CrossRef]

Rakic, A. D.

Scalise, L.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas.53(1), 223–232 (2004).
[CrossRef]

Servagent, N.

F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt.37(28), 6684–6689 (1998).
[CrossRef] [PubMed]

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas.46(4), 847–850 (1997).
[CrossRef]

Shinohara, S.

Sumi, M.

Wang, M.

Wang, W. M.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt.32(9), 1551–1558 (1993).
[CrossRef] [PubMed]

Xu, F.

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett.24(5), 392–394 (2012).
[CrossRef]

Yoshida, H.

Yu, B.

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett.24(5), 392–394 (2012).
[CrossRef]

Yu, Y.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas.53(1), 223–232 (2004).
[CrossRef]

Zhou, J.

Appl. Opt.

IEEE Photon. Technol. Lett.

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett.24(5), 392–394 (2012).
[CrossRef]

P. D. Dragic, “Analytical model for injection-seeded erbium-doped fiber ring lasers,” IEEE Photon. Technol. Lett.17(8), 1629–1631 (2005).
[CrossRef]

IEEE Trans. Instrum. Meas.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas.53(1), 223–232 (2004).
[CrossRef]

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas.46(4), 847–850 (1997).
[CrossRef]

J. Lightwave Technol.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Other

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fiber ring laser block structure with a segment un-pumped EDF inserted.

Fig. 2
Fig. 2

Simulation results of vibration signal according to self-mixing signal. (Upper traces: vibration signal of external target, Lower traces: self-mixing interference signal.)

Fig. 3
Fig. 3

Experiment setup of self-mixing vibrometer based on the narrow linewidth FRL.

Fig. 4
Fig. 4

The free spectral range of the Er3+-doped fiber ring laser.

Fig. 5
Fig. 5

The linewidth of the Er3+-doped fiber ring laser.

Fig. 6
Fig. 6

Self-mixing interference signals when PZT driven by a sinusoidal signal. (Upper traces: vibration signal of the external target, Lower traces: self-mixing interference signal.)

Fig. 7
Fig. 7

Intensity power spectrum of self-mixing interference in fiber ring laser with 50 m delayed fiber.

Fig. 8
Fig. 8

Intensity power DPX spectrum of self-mixing interference in FRL with 50 m delayed fiber.

Tables (1)

Tables Icon

Table 1 Parameters Used for the Example of Fiber Ring Laser

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P p,i(s,i) out = P p,i(s,i) in exp( α p,i(s,i) L+ Δ P p,i(s,i) P p,i(s,i) s + Δ P (p,i)s,i P p,i(s,i) s )
Δ P p,i(s,i) = P p,i(s,i) in P p,i(s,i) out
P p,s s = hν A p,s eff Γ p,s τ( σ p,s e p,s a )
P s,i in = κε 1 P seed1,i + (1-κ)ε 1 P seed2,i
P s,i s s,i L κε 1 P seed1,i + (1-κ)ε 1 P seed2,i P s,i out P s,i s ln[ κε 1 P seed1,i + (1-κ)ε 1 P seed2,i P s,i out ]} = P p,i in [1exp{ α p,i L+ P s,i s P p,i s s,i L[ κε 1 P seed1,i + (1-κ)ε 1 P seed2,i P s,i out ]/ P s,i s ln[ κε 1 P seed1,i + (1-κ)ε 1 P seed2,i P s,i out ]}+ κε 1 P seed1,i + (1-κ)ε 1 P seed2,i P s,i out P p,i s }]
Δ L ext (t)= ACos(ω 0 t)
P seed1,i = (1-κ)(r 1 * ) 2 P s,i out
r 1 =r 1 +η(1-r 1 2 )r 2 Cos(2π L ext / λ i )
P Laser,i = ε 2 (1-κ)(1-r 1 2 ) P s,i out
P Laser = 1 n ε 2 (1-κ )(1-R)P s,i out

Metrics