Abstract

A novel device for self-mixing interference measurement based on the fiber ring laser with ultra-narrow linewidth was investigated for the first time. In order to achieve requirement of our measurement system, a saturable-absorber which consists of a segment un-pumped erbium-doped fiber and a fiber Bragg grating is employed to provide a fine mode selection and guarantee the ultra-narrow linewidth operation. Results demonstrate that the signal-to-noise ratio of the self-mixing interference signal could be enhanced from 18.01 dB to 38.35 dB by inserting a saturable-absorber in the laser cavity. It is in good agreement with the theoretical analysis and proved potential using in self-mixing interference measurement system for high sensitivity and remote measurement.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Self-mixing interference in fiber ring laser and its application for vibration measurement

Xiajuan Dai, Ming Wang, Yi Zhao, and Junping Zhou
Opt. Express 17(19) 16543-16548 (2009)

Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method

Ting Feng, Dongliang Ding, Fengping Yan, Ziwei Zhao, Hongxin Su, and X. Steve Yao
Opt. Express 24(17) 19760-19768 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25(9), 1417–1419 (1986).
    [Crossref] [PubMed]
  2. L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
    [Crossref]
  3. K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett. 27(15), 1339–1341 (2002).
    [Crossref] [PubMed]
  4. F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37(28), 6684–6689 (1998).
    [Crossref] [PubMed]
  5. N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46(4), 847–850 (1997).
    [Crossref]
  6. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32(9), 1551–1558 (1993).
    [Crossref] [PubMed]
  7. K. Otsuka, “Ultrahigh sensitivity laser Doppler velocimetry with a microchip solid-state laser,” Appl. Opt. 33(6), 1111–1114 (1994).
    [Crossref] [PubMed]
  8. Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakić, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17(7), 5517–5525 (2009).
    [Crossref] [PubMed]
  9. D. Han, M. Wang, and J. Zhou, “Self-mixing speckle interference in DFB lasers,” Opt. Express 14(8), 3312–3317 (2006).
    [Crossref] [PubMed]
  10. J. Zhou, M. Wang, and D. Han, “Experiment observation of self-mixing interference in distributed feedback laser,” Opt. Express 14(12), 5301–5306 (2006).
    [Crossref] [PubMed]
  11. L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett. 24(5), 392–394 (2012).
    [Crossref]
  12. P. D. Dragic, “Analytical model for injection-seeded erbium-doped fiber ring lasers,” IEEE Photon. Technol. Lett. 17(8), 1629–1631 (2005).
    [Crossref]
  13. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
    [Crossref]
  14. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

2012 (1)

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett. 24(5), 392–394 (2012).
[Crossref]

2009 (1)

2006 (2)

2005 (1)

P. D. Dragic, “Analytical model for injection-seeded erbium-doped fiber ring lasers,” IEEE Photon. Technol. Lett. 17(8), 1629–1631 (2005).
[Crossref]

2004 (1)

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]

2002 (1)

1998 (1)

1997 (1)

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46(4), 847–850 (1997).
[Crossref]

1994 (2)

K. Otsuka, “Ultrahigh sensitivity laser Doppler velocimetry with a microchip solid-state laser,” Appl. Opt. 33(6), 1111–1114 (1994).
[Crossref] [PubMed]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[Crossref]

1993 (1)

1986 (1)

Abe, K.

Bertling, K.

Bosch, T.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]

F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37(28), 6684–6689 (1998).
[Crossref] [PubMed]

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46(4), 847–850 (1997).
[Crossref]

Boyle, W. J. O.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[Crossref]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32(9), 1551–1558 (1993).
[Crossref] [PubMed]

Cao, Z.

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett. 24(5), 392–394 (2012).
[Crossref]

Dai, J.

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett. 24(5), 392–394 (2012).
[Crossref]

Dragic, P. D.

P. D. Dragic, “Analytical model for injection-seeded erbium-doped fiber ring lasers,” IEEE Photon. Technol. Lett. 17(8), 1629–1631 (2005).
[Crossref]

Giuliani, G.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]

Gouaux, F.

Grattan, K. T. V.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[Crossref]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32(9), 1551–1558 (1993).
[Crossref] [PubMed]

Han, D.

Kliese, R.

Ko, J.-Y.

Lescure, M.

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46(4), 847–850 (1997).
[Crossref]

Lim, T.-S.

Lim, Y. L.

Lu, L.

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett. 24(5), 392–394 (2012).
[Crossref]

Mochizuki, A.

Nikolic, M.

Otsuka, K.

Palmer, A. W.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[Crossref]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32(9), 1551–1558 (1993).
[Crossref] [PubMed]

Plantier, G.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]

Rakic, A. D.

Scalise, L.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]

Servagent, N.

F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37(28), 6684–6689 (1998).
[Crossref] [PubMed]

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46(4), 847–850 (1997).
[Crossref]

Shinohara, S.

Sumi, M.

Wang, M.

Wang, W. M.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[Crossref]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32(9), 1551–1558 (1993).
[Crossref] [PubMed]

Xu, F.

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett. 24(5), 392–394 (2012).
[Crossref]

Yoshida, H.

Yu, B.

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett. 24(5), 392–394 (2012).
[Crossref]

Yu, Y.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]

Zhou, J.

Appl. Opt. (4)

IEEE Photon. Technol. Lett. (2)

L. Lu, Z. Cao, J. Dai, F. Xu, and B. Yu, “Self-mixing signal in Er3+–Yb3+ codoped Distributed Bragg Reflector fiber laser for remote sensing applications up to 20 km,” IEEE Photon. Technol. Lett. 24(5), 392–394 (2012).
[Crossref]

P. D. Dragic, “Analytical model for injection-seeded erbium-doped fiber ring lasers,” IEEE Photon. Technol. Lett. 17(8), 1629–1631 (2005).
[Crossref]

IEEE Trans. Instrum. Meas. (2)

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46(4), 847–850 (1997).
[Crossref]

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[Crossref]

J. Lightwave Technol. (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Other (1)

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fiber ring laser block structure with a segment un-pumped EDF inserted.

Fig. 2
Fig. 2

Simulation results of vibration signal according to self-mixing signal. (Upper traces: vibration signal of external target, Lower traces: self-mixing interference signal.)

Fig. 3
Fig. 3

Experiment setup of self-mixing vibrometer based on the narrow linewidth FRL.

Fig. 4
Fig. 4

The free spectral range of the Er3+-doped fiber ring laser.

Fig. 5
Fig. 5

The linewidth of the Er3+-doped fiber ring laser.

Fig. 6
Fig. 6

Self-mixing interference signals when PZT driven by a sinusoidal signal. (Upper traces: vibration signal of the external target, Lower traces: self-mixing interference signal.)

Fig. 7
Fig. 7

Intensity power spectrum of self-mixing interference in fiber ring laser with 50 m delayed fiber.

Fig. 8
Fig. 8

Intensity power DPX spectrum of self-mixing interference in FRL with 50 m delayed fiber.

Tables (1)

Tables Icon

Table 1 Parameters Used for the Example of Fiber Ring Laser

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P p,i(s,i) out = P p,i(s,i) in exp( α p,i(s,i) L+ Δ P p,i(s,i) P p,i(s,i) s + Δ P (p,i)s,i P p,i(s,i) s )
Δ P p,i(s,i) = P p,i(s,i) in P p,i(s,i) out
P p,s s = hν A p,s eff Γ p,s τ( σ p,s e p,s a )
P s,i in = κε 1 P seed1,i + (1-κ)ε 1 P seed2,i
P s,i s s,i L κε 1 P seed1,i + (1-κ)ε 1 P seed2,i P s,i out P s,i s ln[ κε 1 P seed1,i + (1-κ)ε 1 P seed2,i P s,i out ]} = P p,i in [1exp{ α p,i L+ P s,i s P p,i s s,i L[ κε 1 P seed1,i + (1-κ)ε 1 P seed2,i P s,i out ]/ P s,i s ln[ κε 1 P seed1,i + (1-κ)ε 1 P seed2,i P s,i out ]}+ κε 1 P seed1,i + (1-κ)ε 1 P seed2,i P s,i out P p,i s }]
Δ L ext (t)= ACos(ω 0 t)
P seed1,i = (1-κ)(r 1 * ) 2 P s,i out
r 1 =r 1 +η(1-r 1 2 )r 2 Cos(2π L ext / λ i )
P Laser,i = ε 2 (1-κ)(1-r 1 2 ) P s,i out
P Laser = 1 n ε 2 (1-κ )(1-R)P s,i out

Metrics