Abstract

A new technique for the fast implementation of Brillouin Optical Time Domain Analysis (BOTDA) is proposed and demonstrated, carrying the classical BOTDA method to the dynamic sensing domain. By using a digital signal generator which enables fast switching among 100 scanning frequencies, we demonstrate a truly distributed and dynamic measurement of a 100m long fiber with a sampling rate of ~10kHz, limited only by the fiber length and the frequency granularity. With 10 averages the standard deviation of the measured strain was ~5 µε.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
    [CrossRef] [PubMed]
  2. A. Voskoboinik, J. Wang, B. Shamee, S. R. Nuccio, L. Zhang, M. Chitgarha, A. E. Willner, and M. Tur, “SBS-Based fiber optical sensing using frequency-domain simultaneous tone interrogation,” J. Lightwave Technol. 29(11), 1729–1735 (2011).
    [CrossRef]
  3. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [CrossRef] [PubMed]
  4. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
    [CrossRef]
  5. Y. Peled, A. Motil, and M. Tur, “Fast microwave-photonics frequency sweeping for Brillouin ranging of strain or temperature,” in Proceedings of IEEE Conference on Microwaves, Communications, Antennas and Electronics Systems, (IEEE, 2011).
  6. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [CrossRef]
  7. K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
    [CrossRef]
  8. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
    [CrossRef]
  9. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  10. S. M. Foaleng, M. Tur, J. C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
    [CrossRef]

2011 (4)

2010 (1)

2008 (1)

2007 (1)

2006 (1)

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Abe, K.

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

Bao, X.

Beugnot, J. C.

Brown, A. W.

Brown, K.

Chen, L.

Chitgarha, M.

Colpitts, B. G.

Foaleng, S. M.

He, Z.

Hotate, K.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

Kishi, M.

Li, W.

Li, Y.

Motil, A.

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[CrossRef] [PubMed]

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Nuccio, S. R.

Peled, Y.

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[CrossRef] [PubMed]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Shamee, B.

Song, K. Y.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

Thevenaz, L.

S. M. Foaleng, M. Tur, J. C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Tur, M.

Voskoboinik, A.

Wang, J.

Willner, A. E.

Yaron, L.

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[CrossRef] [PubMed]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

Zhang, L.

IEEE Photon. Technol. Lett. (1)

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

Other (1)

Y. Peled, A. Motil, and M. Tur, “Fast microwave-photonics frequency sweeping for Brillouin ranging of strain or temperature,” in Proceedings of IEEE Conference on Microwaves, Communications, Antennas and Electronics Systems, (IEEE, 2011).

Supplementary Material (1)

» Media 1: MOV (330 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

An example of F-BOTDA fast sweep assembled from three frequencies. Normally, such a sweep comprises between 100 and 200 different frequencies. (a) A sequence of fixed frequency pump pulses meet probe waves of different frequencies. (b) The probe frequency is fixed while the frequency of the pump pulse changes from one pulse to the other.

Fig. 2
Fig. 2

Experimental setup: AWG: arbitrary waveform generator, EOM: electro-optic modulator, EDFA: Erbium-doped fiber amplifier, CIR: circulator, FBG: fiber Bragg grating, PS: polarization scrambler, IS: isolator, ATT: attenuator, FUT: fiber under test, PD: photodiode.

Fig. 3
Fig. 3

The 100m FUT comprising five sections of SMF fiber. The two sections of 0.9m (a) and 1.4m (b) are mounted on manually stretching stages, making it possible to adjust their static Brillouin frequency shifts. Additionally, audio speakers are physically attached to these two sections in order to induce fast strain variations of various frequencies and magnitudes. Segment c is loosed as the rest of the fiber.

Fig. 4
Fig. 4

A zoom in on the last 20m of the 100m fiber, having two sections of 90cm and 140cm long stretched to a static strain of ~800με. The interrogation of the whole 100m fiber took 1.2ms, including 10 averages.

Fig. 5
Fig. 5

On the right: Top view of Fig. 4, indicating the locations of the vibrating (a and b) and non-vibrating (c) segments of the FUT. On the left: the measured frequency distribution of the BGS as a function of time at three different segments of the FUT ( z = z a , z = z b and z = z c ). N a v g = 10. Vibrations of 100Hz and 80Hz are clearly observed at segments a and b, while segment c is static.

Fig. 6
Fig. 6

The time dependent BFS of the two vibrating segments, as determined from the peaks of Lorentzian fits to the BGSs of each time slot.

Fig. 7
Fig. 7

Single-frame excerpts from a video assembled from matrix M, zooming on the last 20m of the FUT. Vibrations of segments a and b are observed (Media 1).

Fig. 8
Fig. 8

(a) A 2D cut through the 3D M ( ) matrix at z = zb, describing the measured BGS of segment b 80Hz vibrations as a function of time. The black line is an additional cut through the plotted 2D at frequency f = f3dB = 10.93GHz, showing the Brillouin gain variations as a function of time, at z = zb at a frequency located at the middle of the BGS slope. Thus, if one cuts the 3D matrix at f = f3dB, a full Distance-Time Gain picture for the whole fiber is obtained from a single frequency probing. (b) A 2D cut from the 3D M ( ) matrix at f = f3dB, describing the Brillouin gain as a function of time at the frequency f3dB along the entire FUT. f3dB designates the frequency at the middle of the slope of the averaged BGS. This technique is called SA-BOTDA [3].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T s c a n = N a v g N f r e q T r o u n d _ t r i p
V I ( t ) = V 0 i = 1 N f r e q r e c t ( t T r o u n d _ t r i p + 1 2 i ) cos [ 2 π ( f i f c ) t ] ; V Q ( t ) = V 0 i = 1 N f r e q r e c t ( t T r o u n d _ t r i p + 1 2 i ) sin [ 2 π ( f i f c ) t ] ;
V R F ( t ) = V I ( t ) cos ( 2 π f c t ) V Q ( t ) sin ( 2 π f c t ) = V 0 i = 1 N f r e q r e c t ( t T r o u n d _ t r i p + 1 2 i ) [ cos [ 2 π ( f i f c ) t ] cos ( 2 π f c t ) sin [ 2 π ( f i f c ) t ] sin ( 2 π f c t ) ] = V 0 i = 1 N f r e q r e c t ( t T r o u n d _ t r i p + 1 2 i ) cos [ 2 π ( f s t a r t + ( i 1 ) f s t e p ) t ]

Metrics