Abstract

A new type of self-coupling multi-port microcoil resonator using a microfiber coupler is presented. The microresonators, a simple combination of a microfiber coupler and microcoil resonator, were fabricated by coiling a four port microfiber coupler around a low index support rod to induce optical resonance via coupling between adjacent turns. Light propagates along the coil whilst the beating between the supermodes of the coupler is still present, giving an increased extinction ratio and an output spectrum strongly dependent on the microfiber coupler diameter. The multiport microcoil resonator was embedded in a low refractive index polymer to improve its robustness and the polarization dependence was further analyzed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7(6), 288–290 (1982).
    [CrossRef] [PubMed]
  2. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  3. M. Sumetsky, “Optical fiber microcoil resonators,” Opt. Express 12(10), 2303–2316 (2004).
    [CrossRef] [PubMed]
  4. G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
    [CrossRef]
  5. Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).
  6. F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19(19), 1481–1483 (2007).
    [CrossRef]
  7. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
    [CrossRef]
  8. M. Belal, Z. Song, Y. Jung, G. Brambilla, and T. P. Newson, “Optical fiber microwire current sensor,” Opt. Lett. 35(18), 3045–3047 (2010).
    [CrossRef] [PubMed]
  9. N. G. Broderick, “Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators,” Opt. Express 16(20), 16247–16254 (2008).
    [CrossRef] [PubMed]
  10. M. Sumetsky, “Optical microfiber coil delay line,” Opt. Express 17(9), 7196–7205 (2009).
    [CrossRef] [PubMed]
  11. G. Vienne, A. Coillet, P. Grelu, M. El Amraoui, J. C. Jules, F. Smektala, and L. Tong, “Demonstration of a reef knot microfiber resonator,” Opt. Express 17(8), 6224–6229 (2009).
    [CrossRef] [PubMed]
  12. Y. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Appl. Phys. Lett. 98(2), 021109 (2011).
    [CrossRef]
  13. B. S. Kawasaki, K. O. Hill, and R. G. Lamont, “Biconical-taper single-mode fiber coupler,” Opt. Lett. 6(7), 327–328 (1981).
    [CrossRef] [PubMed]
  14. Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
    [CrossRef] [PubMed]
  15. K. Okamoto, “Fundamentals of optical waveguides,” Academic Press, (2006).

2011 (1)

Y. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Appl. Phys. Lett. 98(2), 021109 (2011).
[CrossRef]

2010 (3)

G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).

M. Belal, Z. Song, Y. Jung, G. Brambilla, and T. P. Newson, “Optical fiber microwire current sensor,” Opt. Lett. 35(18), 3045–3047 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (2)

N. G. Broderick, “Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators,” Opt. Express 16(20), 16247–16254 (2008).
[CrossRef] [PubMed]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[CrossRef]

2007 (1)

F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19(19), 1481–1483 (2007).
[CrossRef]

2004 (1)

2003 (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

1982 (1)

1981 (1)

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Belal, M.

Brambilla, G.

Y. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Appl. Phys. Lett. 98(2), 021109 (2011).
[CrossRef]

M. Belal, Z. Song, Y. Jung, G. Brambilla, and T. P. Newson, “Optical fiber microwire current sensor,” Opt. Lett. 35(18), 3045–3047 (2010).
[CrossRef] [PubMed]

G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).

Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
[CrossRef] [PubMed]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[CrossRef]

F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19(19), 1481–1483 (2007).
[CrossRef]

Broderick, N. G.

Chodorow, M.

Coillet, A.

El Amraoui, M.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Grelu, P.

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hill, K. O.

Jules, J. C.

Jung, Y.

Y. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Appl. Phys. Lett. 98(2), 021109 (2011).
[CrossRef]

M. Belal, Z. Song, Y. Jung, G. Brambilla, and T. P. Newson, “Optical fiber microwire current sensor,” Opt. Lett. 35(18), 3045–3047 (2010).
[CrossRef] [PubMed]

Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).

Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
[CrossRef] [PubMed]

Kawasaki, B. S.

Lamont, R. G.

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Murugan, G. S.

Y. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Appl. Phys. Lett. 98(2), 021109 (2011).
[CrossRef]

Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).

Newson, T. P.

Richardson, D. J.

Y. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Appl. Phys. Lett. 98(2), 021109 (2011).
[CrossRef]

Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).

Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
[CrossRef] [PubMed]

Shaw, H. J.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Smektala, F.

Song, Z.

Stokes, L. F.

Sumetsky, M.

Tong, L.

Tong, L. M.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Vienne, G.

Xu, F.

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[CrossRef]

F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19(19), 1481–1483 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[CrossRef]

Y. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Appl. Phys. Lett. 98(2), 021109 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).

F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19(19), 1481–1483 (2007).
[CrossRef]

J. Opt. (1)

G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Other (1)

K. Okamoto, “Fundamentals of optical waveguides,” Academic Press, (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the MMCR: two microfibers are fused together at high temperature and later coiled around a low-index support rod. Ports 1 and 2 are the inputs whilst ports 3 and 4 are the outputs.

Fig. 2
Fig. 2

Output spectra of two microfiber couplers; the taper waist diameters were d~3.2 µm for MC1 (a) and d~0.7 µm for MC2 (b). An incoherent white light source was connected to input port 1 and the output ports 3 and 4 were analyzed using optical spectrum analyzer.

Fig. 3
Fig. 3

(a) Microscope image of the coupler (MC1) coiled on the support rod coated with Teflon; spacing between adjacent loops in the coil is ~3.5µm. (b) SEM image of the microcoupler cross section.

Fig. 4
Fig. 4

The power spectra of MMCR1 (a,b) and MMCR2 (c,d) when light is injected into port 1. (a,c) report spectral changes during MMCR fabrication, while (b, d) show the spectra in final devices.

Fig. 5
Fig. 5

Polarization effects in the MMCR1. (a) Output spectra of MMCR1 port 3 when linearly polarized light is injected in port 1. (b) Dependence of the extinction ratio on the polarization azimuthal angle.

Fig. 6
Fig. 6

Cross section of the multiport microcoil resonator; two types of coupling exist in this resonator: the first one ( κ 1 ) between the fibres composing the coupler, the second ( κ 2 ) between different turns of the coil.

Fig. 7
Fig. 7

Simulated mode profiles at the center of MC1. (a) The odd supermode neff = 1.404. (b) The even supermode neff = 1.427. (c) The electric field amplitude of the modes.

Fig. 8
Fig. 8

(a) Simulated transmissivity of the MMCR1. Light is injected from port 1 and collected at ports 3 and 4. (b) The output power spectrum for port 3 and 4 of MMCR1 when light is injected in port 1 and κ 1 is varied. The complimentary behavior is noticed between the two output ports.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d A 2j1 ds =i κ 1 A 2j +i k 2 A 2j2
d A 2j ds =i κ 1 A 2j1 +i k 2 A 2j+1

Metrics