Abstract

We investigate the interaction between terahertz waves and resonant antennas with sub-cycle temporal and λ/100 spatial resolution. Depositing antennas on a LiNbO3 waveguide enables non-invasive electro-optic imaging, quantitative field characterization, and direct measurement of field enhancement (up to 40-fold). The spectral response is determined over a bandwidth spanning from DC across multiple resonances, and distinct behavior is observed in the near- and far-field. The scaling of enhancement and resonant frequency with gap size and antenna length agrees well with simulations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).
  2. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [CrossRef]
  3. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
    [CrossRef] [PubMed]
  4. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  5. E. Cubukcu, E. J. Nanfang Yu, L. Smythe, K. B. Diehl, Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1448–1461 (2008).
    [CrossRef]
  6. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  7. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
    [CrossRef] [PubMed]
  8. D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
    [CrossRef] [PubMed]
  9. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
    [CrossRef]
  10. E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol. 6(9), 588–593 (2011).
    [CrossRef] [PubMed]
  11. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
    [CrossRef] [PubMed]
  12. C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
    [CrossRef] [PubMed]
  13. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [CrossRef] [PubMed]
  14. A. Bitzer, A. Ortner, and M. Walther, “Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas,” Appl. Opt. 49(19), E1–E6 (2010).
    [CrossRef] [PubMed]
  15. F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express 19(9), 8277–8284 (2011).
    [CrossRef] [PubMed]
  16. K. Imura and H. Okamoto, “Reciprocity in scanning near-field optical microscopy: illumination and collection modes of transmission measurements,” Opt. Lett. 31(10), 1474–1476 (2006).
    [CrossRef] [PubMed]
  17. S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13(2), 253–261 (2007).
    [CrossRef]
  18. K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715–2717 (2004).
    [CrossRef]
  19. T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
    [CrossRef]
  20. T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
    [CrossRef] [PubMed]
  21. K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
    [CrossRef]
  22. N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
    [CrossRef] [PubMed]
  23. P. Peier, S. Pilz, and T. Feurer, “Time-resolved coherent imaging of a THz multilayer response,” J. Opt. Soc. Am. B 26(8), 1649–1655 (2009).
    [CrossRef]
  24. R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A 103(49), 10260–10267 (1999).
    [CrossRef]
  25. P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25(7), B70–B75 (2008).
    [CrossRef]
  26. Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
    [CrossRef] [PubMed]
  27. C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, “Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3,” J. Opt. Soc. Am. B 27(11), 2350–2359 (2010).
    [CrossRef]
  28. T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive stimulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. 9(12), 2179–2189 (1992).
    [CrossRef]
  29. J. H. Kang, D. S. Kim, and Q.-H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
    [CrossRef] [PubMed]
  30. B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
    [CrossRef]
  31. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(25), 20484–20489 (2008).
    [CrossRef] [PubMed]
  32. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
    [CrossRef]
  33. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of single-cycle THz transients with high electric-field amplitudes,” Opt. Lett. 30(20), 2805–2807 (2005).
    [CrossRef] [PubMed]
  34. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
    [CrossRef]
  35. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
    [CrossRef]
  36. C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82(12), 123108 (2011).
    [CrossRef] [PubMed]
  37. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford Univ. Press, 2007).
  38. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter 34(6), 4129–4138 (1986).
    [CrossRef] [PubMed]
  39. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

2011 (4)

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol. 6(9), 588–593 (2011).
[CrossRef] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[CrossRef]

C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82(12), 123108 (2011).
[CrossRef] [PubMed]

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express 19(9), 8277–8284 (2011).
[CrossRef] [PubMed]

2010 (4)

A. Bitzer, A. Ortner, and M. Walther, “Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas,” Appl. Opt. 49(19), E1–E6 (2010).
[CrossRef] [PubMed]

C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, “Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3,” J. Opt. Soc. Am. B 27(11), 2350–2359 (2010).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[CrossRef] [PubMed]

2009 (6)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[CrossRef]

Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
[CrossRef] [PubMed]

P. Peier, S. Pilz, and T. Feurer, “Time-resolved coherent imaging of a THz multilayer response,” J. Opt. Soc. Am. B 26(8), 1649–1655 (2009).
[CrossRef]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

J. H. Kang, D. S. Kim, and Q.-H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[CrossRef] [PubMed]

2008 (6)

P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25(7), B70–B75 (2008).
[CrossRef]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[CrossRef] [PubMed]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(25), 20484–20489 (2008).
[CrossRef] [PubMed]

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[CrossRef] [PubMed]

E. Cubukcu, E. J. Nanfang Yu, L. Smythe, K. B. Diehl, Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1448–1461 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[CrossRef] [PubMed]

2007 (4)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13(2), 253–261 (2007).
[CrossRef]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[CrossRef]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[CrossRef]

2006 (2)

K. Imura and H. Okamoto, “Reciprocity in scanning near-field optical microscopy: illumination and collection modes of transmission measurements,” Opt. Lett. 31(10), 1474–1476 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715–2717 (2004).
[CrossRef]

2003 (2)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[CrossRef] [PubMed]

2002 (1)

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
[CrossRef] [PubMed]

1999 (1)

R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A 103(49), 10260–10267 (1999).
[CrossRef]

1992 (1)

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive stimulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. 9(12), 2179–2189 (1992).
[CrossRef]

1986 (1)

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter 34(6), 4129–4138 (1986).
[CrossRef] [PubMed]

1981 (1)

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[CrossRef]

Adachi, S.

R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A 103(49), 10260–10267 (1999).
[CrossRef]

Adam, A. J. L.

Ahn, K. J.

Aizpurua, J.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

Alkorta, J.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Barber, P. W.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[CrossRef]

Barnard, E. S.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol. 6(9), 588–593 (2011).
[CrossRef] [PubMed]

Bartel, T.

Bawendi, M. G.

Bitzer, A.

Blanchard, F.

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express 19(9), 8277–8284 (2011).
[CrossRef] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[CrossRef]

Brongersma, M. L.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol. 6(9), 588–593 (2011).
[CrossRef] [PubMed]

Capasso, F.

E. Cubukcu, E. J. Nanfang Yu, L. Smythe, K. B. Diehl, Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1448–1461 (2008).
[CrossRef]

Chang, R. K.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[CrossRef]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[CrossRef] [PubMed]

Choi, S. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

Crozier,

E. Cubukcu, E. J. Nanfang Yu, L. Smythe, K. B. Diehl, Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1448–1461 (2008).
[CrossRef]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Cubukcu, E.

E. Cubukcu, E. J. Nanfang Yu, L. Smythe, K. B. Diehl, Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1448–1461 (2008).
[CrossRef]

Cuevas, J. C.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[CrossRef] [PubMed]

Diehl, K. B.

E. Cubukcu, E. J. Nanfang Yu, L. Smythe, K. B. Diehl, Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1448–1461 (2008).
[CrossRef]

Doi, A.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[CrossRef]

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express 19(9), 8277–8284 (2011).
[CrossRef] [PubMed]

Dorn, A.

Dougherty, T. P.

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive stimulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. 9(12), 2179–2189 (1992).
[CrossRef]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Elsaesser, T.

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Feurer, T.

P. Peier, S. Pilz, and T. Feurer, “Time-resolved coherent imaging of a THz multilayer response,” J. Opt. Soc. Am. B 26(8), 1649–1655 (2009).
[CrossRef]

P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25(7), B70–B75 (2008).
[CrossRef]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[CrossRef]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[CrossRef] [PubMed]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
[CrossRef] [PubMed]

Fischer, H.

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

Gaal, P.

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[CrossRef] [PubMed]

Grahn, H. T.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter 34(6), 4129–4138 (1986).
[CrossRef] [PubMed]

Hebling, J.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Hillenbrand, R.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

Hirori, H.

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express 19(9), 8277–8284 (2011).
[CrossRef] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[CrossRef]

Hoffmann, M. C.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[CrossRef]

Höppener, C.

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[CrossRef] [PubMed]

Hüser, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[CrossRef] [PubMed]

Imura, K.

Kadoya, Y.

Kang, J. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

J. H. Kang, D. S. Kim, and Q.-H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[CrossRef] [PubMed]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(25), 20484–20489 (2008).
[CrossRef] [PubMed]

Kim, D. S.

J. H. Kang, D. S. Kim, and Q.-H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[CrossRef] [PubMed]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(25), 20484–20489 (2008).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

Kino, G. S.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Koehl, R. M.

R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A 103(49), 10260–10267 (1999).
[CrossRef]

Koenderink, A. F.

S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13(2), 253–261 (2007).
[CrossRef]

Koo, S. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

Lee, J. W.

Lin, K.-H.

Maris, H. J.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter 34(6), 4129–4138 (1986).
[CrossRef] [PubMed]

Martin, O. J. F.

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Messinger, B. J.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[CrossRef]

Mittleman, D. M.

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715–2717 (2004).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Mujumdar, S.

S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13(2), 253–261 (2007).
[CrossRef]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Müller, F.

Nanfang Yu, E. J.

E. Cubukcu, E. J. Nanfang Yu, L. Smythe, K. B. Diehl, Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1448–1461 (2008).
[CrossRef]

Natelson, D.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[CrossRef] [PubMed]

Nelson, K. A.

C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82(12), 123108 (2011).
[CrossRef] [PubMed]

C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, “Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3,” J. Opt. Soc. Am. B 27(11), 2350–2359 (2010).
[CrossRef]

Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
[CrossRef] [PubMed]

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[CrossRef]

P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25(7), B70–B75 (2008).
[CrossRef]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[CrossRef]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[CrossRef]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[CrossRef] [PubMed]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
[CrossRef] [PubMed]

R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A 103(49), 10260–10267 (1999).
[CrossRef]

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive stimulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. 9(12), 2179–2189 (1992).
[CrossRef]

Novotny, L.

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[CrossRef] [PubMed]

Okamoto, H.

Ortner, A.

Pala, R. A.

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol. 6(9), 588–593 (2011).
[CrossRef] [PubMed]

Park, D. J.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

Park, G. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

Park, H. R.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

Park, N. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

Park, Q. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(25), 20484–20489 (2008).
[CrossRef] [PubMed]

Park, Q.-H.

J. H. Kang, D. S. Kim, and Q.-H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[CrossRef] [PubMed]

Pauly, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[CrossRef] [PubMed]

Peier, P.

Pilz, S.

Planken, P. C. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(25), 20484–20489 (2008).
[CrossRef] [PubMed]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715–2717 (2004).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Quidant, R.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[CrossRef] [PubMed]

Reimann, K.

Sandoghdar, V.

S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13(2), 253–261 (2007).
[CrossRef]

Schnell, M.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

Seo, M. A.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(25), 20484–20489 (2008).
[CrossRef] [PubMed]

Smythe, L.

E. Cubukcu, E. J. Nanfang Yu, L. Smythe, K. B. Diehl, Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1448–1461 (2008).
[CrossRef]

Statz, E. R.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[CrossRef]

Stoyanov, N. S.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[CrossRef]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
[CrossRef] [PubMed]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Suwal, O. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

Tait, C. R.

Taminiau, T. H.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[CrossRef] [PubMed]

Tanaka, H.

Tanaka, K.

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express 19(9), 8277–8284 (2011).
[CrossRef] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[CrossRef]

Tanaka, T.

Tauc, J.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter 34(6), 4129–4138 (1986).
[CrossRef] [PubMed]

Teo, S. M.

C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82(12), 123108 (2011).
[CrossRef] [PubMed]

Thomsen, C.

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter 34(6), 4129–4138 (1986).
[CrossRef] [PubMed]

van der Valk, N. C. J.

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715–2717 (2004).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

van Hulst, N. F.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[CrossRef] [PubMed]

Vaughan, J. C.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[CrossRef]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[CrossRef] [PubMed]

von Raben, K. U.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[CrossRef]

Walther, M.

Wang, K.

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715–2717 (2004).
[CrossRef]

Ward, D. R.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[CrossRef] [PubMed]

Ward, D. W.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[CrossRef]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
[CrossRef] [PubMed]

Werley, C. A.

C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82(12), 123108 (2011).
[CrossRef] [PubMed]

C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, “Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3,” J. Opt. Soc. Am. B 27(11), 2350–2359 (2010).
[CrossRef]

Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
[CrossRef] [PubMed]

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[CrossRef]

Wiederrecht, G. P.

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive stimulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. 9(12), 2179–2189 (1992).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Woerner, M.

Wu, Q.

Wüest, R.

S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13(2), 253–261 (2007).
[CrossRef]

Yeh, K.-L.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[CrossRef]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Annu. Rev. Mater. Res. (1)

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[CrossRef]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715–2717 (2004).
[CrossRef]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[CrossRef]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 13(2), 253–261 (2007).
[CrossRef]

E. Cubukcu, E. J. Nanfang Yu, L. Smythe, K. B. Diehl, Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1448–1461 (2008).
[CrossRef]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

J. Chem. Phys. (1)

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive stimulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. 9(12), 2179–2189 (1992).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. A (1)

R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A 103(49), 10260–10267 (1999).
[CrossRef]

Nano Lett. (2)

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[CrossRef] [PubMed]

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002).
[CrossRef] [PubMed]

Nat. Nanotechnol. (2)

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[CrossRef] [PubMed]

E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol. 6(9), 588–593 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (1)

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B Condens. Matter 34(6), 4129–4138 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

J. H. Kang, D. S. Kim, and Q.-H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[CrossRef] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82(12), 123108 (2011).
[CrossRef] [PubMed]

Science (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[CrossRef] [PubMed]

Other (3)

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford Univ. Press, 2007).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Supplementary Material (2)

» Media 1: MOV (978 KB)     
» Media 2: MOV (2442 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The experimental pumping geometry. A THz wave is generated by an ultrafast optical pump pulse and guided down the 30 μm thick LiNbO3 slab until its evanescent field interacts with the gold antenna deposited on the surface.

Fig. 2
Fig. 2

Antenna design and images of THz fields. (a)-(f) w=10 μm and g=5 μm. In (b)-(d) =94 μm and in (e) and (f) =110 μm. (a) The charge distribution and electric field lines (in green) for the lowest antenna mode. (b) An optical image of the antenna. (c) An experimental image of Ez at one moment in time as a rightward-propagating, resonant THz wave interacts with the antenna in (b) (Media 1). (d) A magnified view of (c) with better than 2 μm resolution. (e) The field profile soon after a rightward-propagating THz wave at 760 GHz (the second antenna resonance) has passed the antenna (Media 2). (f) The theoretical wave pattern emitted from a pair of =3λ/2 wires in free space.

Fig. 3
Fig. 3

(a) Time traces of a broadband THz wave measured far above the antenna (blue spot in the inset of (b), the reference field location); ~100 μm after the antenna (orange spot); and directly in the 5 μm antenna gap (green spot). (b) The spectral amplitude of each trace calculated from the Fourier transform of data in (a). (c) The ratio of signal and reference traces shown in (b). (d) The time trace for a multi-cycle reference THz wave (blue) and the enhanced field measured in a 2 μm antenna gap (green).

Fig. 4
Fig. 4

In-gap enhancement spectra [green dot in Fig. 3(b)] for various antennas are shown in (a) and (b), and transmission spectra [orange dot in Fig. 3(b)] are shown in (c) and (d). (a) and (c) Spectra for a fixed arm length =94 μm for different gap sizes. (b) and (d) Spectra for a fixed gap size g = 5 μm for different arm lengths.

Fig. 5
Fig. 5

Trends as a function of gap size for a fixed arm length of 94 μm [(a) and (c)] and as a function of arm length for a fixed gap size of 5 μm [(b) and (d)]. (a) and (b) show the frequency at which the peak enhancement occurred (green) and the frequency of the antenna for which the transmission was minimized (orange).The upper set of data in (a) and (b) (circles and triangles) corresponds to the 3λ/2 antenna mode and the lower data corresponds to the λ/2 mode. (c) and (d) show the maximum amplitude enhancement in the antenna gap. Green circles are experimental measurements in the gap and orange triangles are experimental measurements after the gap. The solid green (in gap) and dashed orange (after gap) lines are the results of FDTD simulations with the same gap sizes and arm lengths as in the experiments.

Fig. 6
Fig. 6

Sample fabrication procedure. The optical lithography process for depositing 150 nm thick gold antennas on a 30 μm thick LiNbO3 slab.

Fig. 7
Fig. 7

The experimental geometry for time-resolved, phase contrast imaging of THz waves in the LiNbO3 sample.

Fig. 8
Fig. 8

The experimental geometry for point-source detection. The sample is imaged onto the camera using incoherent 530 nm light from an LED source. A small fraction of the 400 nm probe light also reaches the camera, allowing simultaneous visualization of antenna and probe spot. The sample is mounted on a 3D translation stage with differential micrometers, making it possible to position the sample with ~200 nm accuracy relative to the probe spot which is focused to 1 μm with a 0.28 numerical aperture microscope objective [see Fig. 2(b)]. After the sample is correctly positioned, the THz transients can be measured in transmission or reflection mode. The intensity front of the optical pump pulse is tilted by imaging a diffraction grating onto the sample.

Fig. 9
Fig. 9

Modeling the antenna as a damped harmonic oscillator. (a) The amplitude and phase of a damped harmonic oscillator (γ = 0.18) as a function of the normalized driving frequency, ν/ν0, with ν0 the resonant frequency. (b) The experimentally measured enhancement in the gap of a 110 μm arm-length antenna (purple) and |Q + 1|, the interference between the harmonic oscillator response and a constant background (orange).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I 0 (1±sinΔφ),
ΔI I 0 2Δφ=4π λ opt Δ n eo Δ n o =2π λ opt ( r 33 n eo 3 r 13 n o 3 ) E THz ,
ΔR R 0 4Δ n eo surf n eo 2 1 = 2 r 33 n eo 3 n eo 2 1 E THz surf .
r= r 0 + i4k ( n eo +1) 2 0 exp(2ikx)Δ n eo (x)dx r 0 +Δr
ΔR R 0 = 1 1+ [ λ opt /(4π n eo l)] 2 4Δ n eo surf n eo 2 1 ,
E THz surf = ξ THz surf ξ THz E THz = 1 2π( r 33 n eo 3 r 13 n o 3 ) λ opt ξ THz surf ξ THz ΔI I 0 ,
d 2 Q dt +2(2π ν 0 )γ dQ dt + (2π ν 0 ) 2 Q= (2π) 2 A 0 sin(2πνt).
Q(t)=A(ν)sin[2πνt+ϕ(ν)]
A(ν)= A 0 (2ν ν 0 γ) 2 + ( ν 2 ν 0 2 ) 2
φ(ν)=arctan( 2ν ν 0 γ ν 2 ν 0 2 ).

Metrics