Abstract

This paper reports a nano-opto-mechanical pressure sensor based on nano-scaled ring resonator. The pressure is measured through the output spectrum shift which is induced via mechanical deformation of the ring resonator. The sensitivity as high as 1.47 pm/kPa has been experimentally achieved which agrees with numerical prediction. Due to the strong variation of sensitivity with different ring radius and thickness of the diaphragm, the pressure sensor can be used to form an array structure to detect the pressure distribution in highly accurate measurement with low-cost advantages. The nano-opto-mechanical pressure sensor has potential applications such as shear stress displacement detection, pressure wave detector and pressure mapping etc.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Chao, W. J. Lai, C. Y. Chen, H. F. Meng, H. W. Zan, and S.-F. Horng, “Low voltage active pressure sensor based on polymer space-change-limited transisitor,” Appl. Phys. Lett. 95(25), 253306 (2009).
    [CrossRef]
  2. M. Esashi, H. Komatsu, and T. Matsuo, “Biomedical pressure sensor using buried piezoresistors,” Sens. Actuators A Phys. 4, 537–544 (1983).
    [CrossRef]
  3. C. S. Sander, J. W. Knutti, and J. D. Meindl, “A monolithic capacitive pressure sensor with pulse-period output,” IEEE Trans. Electron. Dev. 27(5), 927–930 (1980).
    [CrossRef]
  4. D. D. Bruyker and R. Puers, “Thermostatic control for temperature compensation of a silicon pressure sensor,” Sens. Actuators A Phys. 82(1-3), 120–127 (2000).
    [CrossRef]
  5. M. C. Oh, J. W. Kim, K. J. Kim, and S. S. Lee, “Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides,” IEEE Photon. Technol. Lett. 21(8), 501–503 (2009).
    [CrossRef]
  6. D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett. 30(16), 2071–2073 (2005).
    [CrossRef] [PubMed]
  7. Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
    [CrossRef]
  8. Y. F. Chau, H. H. Yeh, and D. P. Tsai, “Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell in fiber cladding,” Jpn. J. Appl. Phys. 46(43), L1048–L1051 (2007).
    [CrossRef]
  9. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach–Zehnder biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998).
    [CrossRef]
  10. M. Ohkawa, M. Izutsu, and T. Sueta, “Integrated optic pressure sensor on silicon substrate,” Appl. Opt. 28(23), 5153–5157 (1989).
    [CrossRef] [PubMed]
  11. N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, “SU-8 waveguiding interferometric micro-sensor for gage pressure measurement,” Sens. Actuators A Phys. 135(1), 179–184 (2007).
    [CrossRef]
  12. A. Méndez, “Fiber bragg grating sensors: a market overview,” Proc. SPIE 6619, 661905 (2007).
    [CrossRef]
  13. E. Udd and B. W. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists (John Wiley & Sons, 2011).
  14. W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struct. 6(5), 530–539 (1997).
    [CrossRef]
  15. C. T. Peng, J. C. Lin, C. T. Lin, and K. N. Chiang, “Performance and package effect of a novel piezoresisitive pressure sensor fabricated by front-side etching technology,” Sens. Actuators A Phys. 119(1), 28–37 (2005).
    [CrossRef]
  16. I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro ring resonator displacement sensor for scanning probe microscopies,” J. Micromech. Microeng. 14(3), 374–381 (2004).
    [CrossRef]
  17. G. N. De Brabender, J. T. Boyd, and G. Beheim, “Integrated optical ring resonator with micromechanical diaphragm for pressure sensing,” IEEE Photon. Technol. Lett. 6(5), 671–673 (1994).
    [CrossRef]
  18. M. H. Bao, Analysis and Design Principles of MEMS Devices (Elsevier, 2005).
  19. S. U. Pillai, Array Signal Processing (Springer-Verlag, 1989).
  20. H. M. Berger, “A new approach to the analysis of large deflections of plates,” J. Appl. Mech. 22, 465–472 (1955).
  21. K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006).
  22. K. Ohtani and M. Baba, “Shape Recognition for Transparent Objects Using Ultrasonic Sensor Array,” SICE, 2007 Annual Conf. 1813–1818 (2007).

2009 (2)

Y. C. Chao, W. J. Lai, C. Y. Chen, H. F. Meng, H. W. Zan, and S.-F. Horng, “Low voltage active pressure sensor based on polymer space-change-limited transisitor,” Appl. Phys. Lett. 95(25), 253306 (2009).
[CrossRef]

M. C. Oh, J. W. Kim, K. J. Kim, and S. S. Lee, “Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides,” IEEE Photon. Technol. Lett. 21(8), 501–503 (2009).
[CrossRef]

2007 (3)

Y. F. Chau, H. H. Yeh, and D. P. Tsai, “Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell in fiber cladding,” Jpn. J. Appl. Phys. 46(43), L1048–L1051 (2007).
[CrossRef]

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, “SU-8 waveguiding interferometric micro-sensor for gage pressure measurement,” Sens. Actuators A Phys. 135(1), 179–184 (2007).
[CrossRef]

A. Méndez, “Fiber bragg grating sensors: a market overview,” Proc. SPIE 6619, 661905 (2007).
[CrossRef]

2005 (3)

D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett. 30(16), 2071–2073 (2005).
[CrossRef] [PubMed]

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

C. T. Peng, J. C. Lin, C. T. Lin, and K. N. Chiang, “Performance and package effect of a novel piezoresisitive pressure sensor fabricated by front-side etching technology,” Sens. Actuators A Phys. 119(1), 28–37 (2005).
[CrossRef]

2004 (1)

I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro ring resonator displacement sensor for scanning probe microscopies,” J. Micromech. Microeng. 14(3), 374–381 (2004).
[CrossRef]

2000 (1)

D. D. Bruyker and R. Puers, “Thermostatic control for temperature compensation of a silicon pressure sensor,” Sens. Actuators A Phys. 82(1-3), 120–127 (2000).
[CrossRef]

1998 (1)

1997 (1)

W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struct. 6(5), 530–539 (1997).
[CrossRef]

1994 (1)

G. N. De Brabender, J. T. Boyd, and G. Beheim, “Integrated optical ring resonator with micromechanical diaphragm for pressure sensing,” IEEE Photon. Technol. Lett. 6(5), 671–673 (1994).
[CrossRef]

1989 (1)

1983 (1)

M. Esashi, H. Komatsu, and T. Matsuo, “Biomedical pressure sensor using buried piezoresistors,” Sens. Actuators A Phys. 4, 537–544 (1983).
[CrossRef]

1980 (1)

C. S. Sander, J. W. Knutti, and J. D. Meindl, “A monolithic capacitive pressure sensor with pulse-period output,” IEEE Trans. Electron. Dev. 27(5), 927–930 (1980).
[CrossRef]

1955 (1)

H. M. Berger, “A new approach to the analysis of large deflections of plates,” J. Appl. Mech. 22, 465–472 (1955).

Aydinli, A.

I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro ring resonator displacement sensor for scanning probe microscopies,” J. Micromech. Microeng. 14(3), 374–381 (2004).
[CrossRef]

Bêche, B.

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, “SU-8 waveguiding interferometric micro-sensor for gage pressure measurement,” Sens. Actuators A Phys. 135(1), 179–184 (2007).
[CrossRef]

Beheim, G.

G. N. De Brabender, J. T. Boyd, and G. Beheim, “Integrated optical ring resonator with micromechanical diaphragm for pressure sensing,” IEEE Photon. Technol. Lett. 6(5), 671–673 (1994).
[CrossRef]

Berger, H. M.

H. M. Berger, “A new approach to the analysis of large deflections of plates,” J. Appl. Mech. 22, 465–472 (1955).

Boyd, J. T.

G. N. De Brabender, J. T. Boyd, and G. Beheim, “Integrated optical ring resonator with micromechanical diaphragm for pressure sensing,” IEEE Photon. Technol. Lett. 6(5), 671–673 (1994).
[CrossRef]

Bruyker, D. D.

D. D. Bruyker and R. Puers, “Thermostatic control for temperature compensation of a silicon pressure sensor,” Sens. Actuators A Phys. 82(1-3), 120–127 (2000).
[CrossRef]

Camberlein, L.

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, “SU-8 waveguiding interferometric micro-sensor for gage pressure measurement,” Sens. Actuators A Phys. 135(1), 179–184 (2007).
[CrossRef]

Chao, Y. C.

Y. C. Chao, W. J. Lai, C. Y. Chen, H. F. Meng, H. W. Zan, and S.-F. Horng, “Low voltage active pressure sensor based on polymer space-change-limited transisitor,” Appl. Phys. Lett. 95(25), 253306 (2009).
[CrossRef]

Chau, Y. F.

Y. F. Chau, H. H. Yeh, and D. P. Tsai, “Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell in fiber cladding,” Jpn. J. Appl. Phys. 46(43), L1048–L1051 (2007).
[CrossRef]

Chen, C. Y.

Y. C. Chao, W. J. Lai, C. Y. Chen, H. F. Meng, H. W. Zan, and S.-F. Horng, “Low voltage active pressure sensor based on polymer space-change-limited transisitor,” Appl. Phys. Lett. 95(25), 253306 (2009).
[CrossRef]

Chiang, K. N.

C. T. Peng, J. C. Lin, C. T. Lin, and K. N. Chiang, “Performance and package effect of a novel piezoresisitive pressure sensor fabricated by front-side etching technology,” Sens. Actuators A Phys. 119(1), 28–37 (2005).
[CrossRef]

Cibula, E.

De Brabender, G. N.

G. N. De Brabender, J. T. Boyd, and G. Beheim, “Integrated optical ring resonator with micromechanical diaphragm for pressure sensing,” IEEE Photon. Technol. Lett. 6(5), 671–673 (1994).
[CrossRef]

Donlagic, D.

Eaton, W. P.

W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struct. 6(5), 530–539 (1997).
[CrossRef]

Esashi, M.

M. Esashi, H. Komatsu, and T. Matsuo, “Biomedical pressure sensor using buried piezoresistors,” Sens. Actuators A Phys. 4, 537–544 (1983).
[CrossRef]

Fabricius, N.

Gaviot, E.

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, “SU-8 waveguiding interferometric micro-sensor for gage pressure measurement,” Sens. Actuators A Phys. 135(1), 179–184 (2007).
[CrossRef]

Hollenbach, U.

Horng, S.-F.

Y. C. Chao, W. J. Lai, C. Y. Chen, H. F. Meng, H. W. Zan, and S.-F. Horng, “Low voltage active pressure sensor based on polymer space-change-limited transisitor,” Appl. Phys. Lett. 95(25), 253306 (2009).
[CrossRef]

Ingenhoff, J.

Izutsu, M.

Kim, J. W.

M. C. Oh, J. W. Kim, K. J. Kim, and S. S. Lee, “Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides,” IEEE Photon. Technol. Lett. 21(8), 501–503 (2009).
[CrossRef]

Kim, K. J.

M. C. Oh, J. W. Kim, K. J. Kim, and S. S. Lee, “Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides,” IEEE Photon. Technol. Lett. 21(8), 501–503 (2009).
[CrossRef]

Kiyat, I.

I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro ring resonator displacement sensor for scanning probe microscopies,” J. Micromech. Microeng. 14(3), 374–381 (2004).
[CrossRef]

Knutti, J. W.

C. S. Sander, J. W. Knutti, and J. D. Meindl, “A monolithic capacitive pressure sensor with pulse-period output,” IEEE Trans. Electron. Dev. 27(5), 927–930 (1980).
[CrossRef]

Kocabas, C.

I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro ring resonator displacement sensor for scanning probe microscopies,” J. Micromech. Microeng. 14(3), 374–381 (2004).
[CrossRef]

Komatsu, H.

M. Esashi, H. Komatsu, and T. Matsuo, “Biomedical pressure sensor using buried piezoresistors,” Sens. Actuators A Phys. 4, 537–544 (1983).
[CrossRef]

Lai, W. J.

Y. C. Chao, W. J. Lai, C. Y. Chen, H. F. Meng, H. W. Zan, and S.-F. Horng, “Low voltage active pressure sensor based on polymer space-change-limited transisitor,” Appl. Phys. Lett. 95(25), 253306 (2009).
[CrossRef]

Lee, S. S.

M. C. Oh, J. W. Kim, K. J. Kim, and S. S. Lee, “Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides,” IEEE Photon. Technol. Lett. 21(8), 501–503 (2009).
[CrossRef]

Lin, C. T.

C. T. Peng, J. C. Lin, C. T. Lin, and K. N. Chiang, “Performance and package effect of a novel piezoresisitive pressure sensor fabricated by front-side etching technology,” Sens. Actuators A Phys. 119(1), 28–37 (2005).
[CrossRef]

Lin, J. C.

C. T. Peng, J. C. Lin, C. T. Lin, and K. N. Chiang, “Performance and package effect of a novel piezoresisitive pressure sensor fabricated by front-side etching technology,” Sens. Actuators A Phys. 119(1), 28–37 (2005).
[CrossRef]

Luff, B. J.

Matsuo, T.

M. Esashi, H. Komatsu, and T. Matsuo, “Biomedical pressure sensor using buried piezoresistors,” Sens. Actuators A Phys. 4, 537–544 (1983).
[CrossRef]

Meindl, J. D.

C. S. Sander, J. W. Knutti, and J. D. Meindl, “A monolithic capacitive pressure sensor with pulse-period output,” IEEE Trans. Electron. Dev. 27(5), 927–930 (1980).
[CrossRef]

Méndez, A.

A. Méndez, “Fiber bragg grating sensors: a market overview,” Proc. SPIE 6619, 661905 (2007).
[CrossRef]

Meng, H. F.

Y. C. Chao, W. J. Lai, C. Y. Chen, H. F. Meng, H. W. Zan, and S.-F. Horng, “Low voltage active pressure sensor based on polymer space-change-limited transisitor,” Appl. Phys. Lett. 95(25), 253306 (2009).
[CrossRef]

Oh, M. C.

M. C. Oh, J. W. Kim, K. J. Kim, and S. S. Lee, “Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides,” IEEE Photon. Technol. Lett. 21(8), 501–503 (2009).
[CrossRef]

Ohkawa, M.

Pelletier, N.

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, “SU-8 waveguiding interferometric micro-sensor for gage pressure measurement,” Sens. Actuators A Phys. 135(1), 179–184 (2007).
[CrossRef]

Peng, C. T.

C. T. Peng, J. C. Lin, C. T. Lin, and K. N. Chiang, “Performance and package effect of a novel piezoresisitive pressure sensor fabricated by front-side etching technology,” Sens. Actuators A Phys. 119(1), 28–37 (2005).
[CrossRef]

Piehler, J.

Puers, R.

D. D. Bruyker and R. Puers, “Thermostatic control for temperature compensation of a silicon pressure sensor,” Sens. Actuators A Phys. 82(1-3), 120–127 (2000).
[CrossRef]

Sander, C. S.

C. S. Sander, J. W. Knutti, and J. D. Meindl, “A monolithic capacitive pressure sensor with pulse-period output,” IEEE Trans. Electron. Dev. 27(5), 927–930 (1980).
[CrossRef]

Smith, J. H.

W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struct. 6(5), 530–539 (1997).
[CrossRef]

Sueta, T.

Tahani, N.

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, “SU-8 waveguiding interferometric micro-sensor for gage pressure measurement,” Sens. Actuators A Phys. 135(1), 179–184 (2007).
[CrossRef]

Tsai, D. P.

Y. F. Chau, H. H. Yeh, and D. P. Tsai, “Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell in fiber cladding,” Jpn. J. Appl. Phys. 46(43), L1048–L1051 (2007).
[CrossRef]

Wang, A.

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

Wilkinson, J. S.

Yeh, H. H.

Y. F. Chau, H. H. Yeh, and D. P. Tsai, “Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell in fiber cladding,” Jpn. J. Appl. Phys. 46(43), L1048–L1051 (2007).
[CrossRef]

Zan, H. W.

Y. C. Chao, W. J. Lai, C. Y. Chen, H. F. Meng, H. W. Zan, and S.-F. Horng, “Low voltage active pressure sensor based on polymer space-change-limited transisitor,” Appl. Phys. Lett. 95(25), 253306 (2009).
[CrossRef]

Zhu, Y.

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

Zyss, J.

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, “SU-8 waveguiding interferometric micro-sensor for gage pressure measurement,” Sens. Actuators A Phys. 135(1), 179–184 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. C. Chao, W. J. Lai, C. Y. Chen, H. F. Meng, H. W. Zan, and S.-F. Horng, “Low voltage active pressure sensor based on polymer space-change-limited transisitor,” Appl. Phys. Lett. 95(25), 253306 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. C. Oh, J. W. Kim, K. J. Kim, and S. S. Lee, “Optical pressure sensors based on vertical directional coupling with flexible polymer waveguides,” IEEE Photon. Technol. Lett. 21(8), 501–503 (2009).
[CrossRef]

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

G. N. De Brabender, J. T. Boyd, and G. Beheim, “Integrated optical ring resonator with micromechanical diaphragm for pressure sensing,” IEEE Photon. Technol. Lett. 6(5), 671–673 (1994).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

C. S. Sander, J. W. Knutti, and J. D. Meindl, “A monolithic capacitive pressure sensor with pulse-period output,” IEEE Trans. Electron. Dev. 27(5), 927–930 (1980).
[CrossRef]

J. Appl. Mech. (1)

H. M. Berger, “A new approach to the analysis of large deflections of plates,” J. Appl. Mech. 22, 465–472 (1955).

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro ring resonator displacement sensor for scanning probe microscopies,” J. Micromech. Microeng. 14(3), 374–381 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. F. Chau, H. H. Yeh, and D. P. Tsai, “Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell in fiber cladding,” Jpn. J. Appl. Phys. 46(43), L1048–L1051 (2007).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

A. Méndez, “Fiber bragg grating sensors: a market overview,” Proc. SPIE 6619, 661905 (2007).
[CrossRef]

Sens. Actuators A Phys. (4)

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, “SU-8 waveguiding interferometric micro-sensor for gage pressure measurement,” Sens. Actuators A Phys. 135(1), 179–184 (2007).
[CrossRef]

C. T. Peng, J. C. Lin, C. T. Lin, and K. N. Chiang, “Performance and package effect of a novel piezoresisitive pressure sensor fabricated by front-side etching technology,” Sens. Actuators A Phys. 119(1), 28–37 (2005).
[CrossRef]

D. D. Bruyker and R. Puers, “Thermostatic control for temperature compensation of a silicon pressure sensor,” Sens. Actuators A Phys. 82(1-3), 120–127 (2000).
[CrossRef]

M. Esashi, H. Komatsu, and T. Matsuo, “Biomedical pressure sensor using buried piezoresistors,” Sens. Actuators A Phys. 4, 537–544 (1983).
[CrossRef]

Smart Mater. Struct. (1)

W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struct. 6(5), 530–539 (1997).
[CrossRef]

Other (5)

E. Udd and B. W. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists (John Wiley & Sons, 2011).

K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006).

K. Ohtani and M. Baba, “Shape Recognition for Transparent Objects Using Ultrasonic Sensor Array,” SICE, 2007 Annual Conf. 1813–1818 (2007).

M. H. Bao, Analysis and Design Principles of MEMS Devices (Elsevier, 2005).

S. U. Pillai, Array Signal Processing (Springer-Verlag, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the nano-opto-mechanical pressure sensor. (b) Cross-section of the pressure sensor. (c) The 4 × 4 pressure sensor array.

Fig. 2
Fig. 2

Schematic illustration of the radius change of the ring resonator Δr due to the shear stress displacement (a) before and (b) after pressure applied on the diaphragm.

Fig. 3
Fig. 3

(a) The deflection of the diaphragm in z-direction as the function of the ρ when the thickness of the diaphragm is 15 µm (dashed line), 20 µm (solid line) and 40 µm (dash-dotted line), respectively. (b) The deflection in ρ-direction at different diaphragm thicknesses when the applied pressure is 60 kPa. (c) The radius change of the ring resonator Δr as the function of the pressure P at different diaphragm thicknesses when the initial radius of the ring resonator r is 137 µm. (d) The radius change of ring resonator Δr as the function of the pressure P at different initial radius r. when the thickness of the diaphragm is 20 µm.

Fig. 4
Fig. 4

(a) The sensitivity C2 versus the thickness of the diaphragm h with different radius of the ring resonator r. (b) The sensitivity C2 versus the radius of the ring resonator r with different thickness of the diaphragm h.

Fig. 5
Fig. 5

SEM images of (a) ring resonator with 70-µm radius, and (b) zoom view of the gap between the bus waveguide and ring resonator.

Fig. 6
Fig. 6

(a) Transmission spectra at various applied pressures on the diaphragm when the radius of the ring resonator r = 137 µm and the thickness of the diaphragm h = 20 µm. (b) Wavelength shift versus the pressure when r = 137 µm, h = 20µm (solid line), r = 137 µm, h = 40 µm (dotted line) and r = 70 µm, h = 20 µm (dashed line), respectively. (c) Measured hysteresis of wavelength shift versus pressure when r = 137 µm, h = 20µm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( d 2 d r 2 + 1 r d dr )( d 2 w d r 2 + 1 r dw dr γ 2 w )= P D eq
D eq = 1 3( 1 v i 2 ) [ ( h 1 h 0 ) 3 + h 0 3 + 1 3 ( h 2 + h 1 h 0 ) 3 1 3 ( h 1 h 0 ) 3 ]
γ 2 = 12 h 2 [ du dr + u r + 1 2 ( dw dr ) 2 ]
Δr= C 1 P
βL= 2π λ n eff 2πr=2mπ
Δλ= 2π n eff m Δr
Δλ= 2π n eff C 1 P m = C 2 P

Metrics