Abstract

We describe nonlinear properties of a GaInP photonic crystal Fabry-Perot resonator containing integrated reflectors. The device exhibits an extremely large static nonlinearity due to a thermal effect. Dynamical measurements were used to discriminate between the thermal and Kerr contributions to the nonlinearity. The high frequency nonlinear response is strictly due to the Kerr effect and the efficiency is similar to that obtained in self-phase modulation and four wave mixing experiments. The waveguide dispersion and the wavelength dependent integrated reflectors yield a series of transmission peaks with varying widths which determine the maximum speed at which the device can operate. Switching and wavelength conversion experiments with 92ps and 30ps wide pulses were demonstrated using pulse energies of a few pJ. The switching process is Kerr dominated with the fundamental response being essentially instantaneous so that the obtainable switching speed is strictly determined by the resonator structure.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Husko, A. De Rossi, S. Combrié, Q. Vy Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
    [CrossRef]
  2. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]
  3. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
    [CrossRef] [PubMed]
  4. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocaviy,” Nat. Photonics 4, 477–483 (2010).
    [CrossRef]
  5. H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. In-oue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot alloptical switch for future photonic network,” Opt. Express 12, 6606–6614 (2004).
    [CrossRef] [PubMed]
  6. S. Combrié, A. De Rossi, Q. Vy Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
    [CrossRef] [PubMed]
  7. I. Cestier, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, and A. De Rossi, “Resonance enhanced large third order nonlinear optical response in slow light GaInP photonic-crystal waveguides,” Opt. Express 18, 5746–5753 (2010).
    [CrossRef] [PubMed]
  8. M. Mulot, M. Swillo, M. Qiu, M. Strassner, M. Hede, and S. Anand, “Fabry-Pérot cavities based on two-dimensional photonic crystals fabricated in InP membranes,” J. Appl. Phys. 95, 5928–5930 (2004).
    [CrossRef]
  9. M. Qiu, T. Sundström, and U. Andersson, “Radiation losses of air-hole mirrors in a photonic crystal waveguide realized in membrane structures,” 30th European Conference and Exhibition on Optical Communication (ECOC), paper Symposium We2.1.4 (2004).
  10. Q. Vy Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
    [CrossRef]
  11. C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express 13, 245–255 (2004).
    [CrossRef]
  12. Lumerical Solutions, Inc. http://www.lumerical.com/ .
  13. S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, “Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications,” J. Vac. Sci. Technol. B 23, 1521 (2005).
    [CrossRef]
  14. M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express 18, 21024–21029 (2010).
    [CrossRef] [PubMed]
  15. S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
    [CrossRef]
  16. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett. 35, 1440–1442 (2010).
    [CrossRef] [PubMed]
  17. T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferrometer,” Phys. Rev. A 19, 1169–1176 (1979).
    [CrossRef]
  18. K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron 14, 938–945 (2008).
    [CrossRef]
  19. G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
    [CrossRef]
  20. A. D. Bristow, R. Lyer, J. S. Aitchison, H. M. van Driel, and A. L. Smirl, “Switchable AlxGa1−xAs all-optical delay line at 1.55μm,” Appl. Phys. Lett. 90, 101112 (2007).
    [CrossRef]
  21. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
    [CrossRef]

2010 (4)

2009 (3)

C. Husko, A. De Rossi, S. Combrié, Q. Vy Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

Q. Vy Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
[CrossRef]

2008 (2)

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron 14, 938–945 (2008).
[CrossRef]

S. Combrié, A. De Rossi, Q. Vy Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
[CrossRef] [PubMed]

2007 (1)

A. D. Bristow, R. Lyer, J. S. Aitchison, H. M. van Driel, and A. L. Smirl, “Switchable AlxGa1−xAs all-optical delay line at 1.55μm,” Appl. Phys. Lett. 90, 101112 (2007).
[CrossRef]

2005 (3)

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[CrossRef] [PubMed]

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, “Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications,” J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

2004 (3)

2002 (1)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[CrossRef]

1993 (1)

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
[CrossRef]

1979 (1)

T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferrometer,” Phys. Rev. A 19, 1169–1176 (1979).
[CrossRef]

Absil, P. P.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Aitchison, J. S.

A. D. Bristow, R. Lyer, J. S. Aitchison, H. M. van Driel, and A. L. Smirl, “Switchable AlxGa1−xAs all-optical delay line at 1.55μm,” Appl. Phys. Lett. 90, 101112 (2007).
[CrossRef]

Anand, S.

M. Mulot, M. Swillo, M. Qiu, M. Strassner, M. Hede, and S. Anand, “Fabry-Pérot cavities based on two-dimensional photonic crystals fabricated in InP membranes,” J. Appl. Phys. 95, 5928–5930 (2004).
[CrossRef]

Andersson, U.

M. Qiu, T. Sundström, and U. Andersson, “Radiation losses of air-hole mirrors in a photonic crystal waveguide realized in membrane structures,” 30th European Conference and Exhibition on Optical Communication (ECOC), paper Symposium We2.1.4 (2004).

Asakawa, K.

Assanto, G.

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
[CrossRef]

Bansropun, S.

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, “Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications,” J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Benisty, H.

S. Combrié, A. De Rossi, Q. Vy Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
[CrossRef] [PubMed]

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, “Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications,” J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Bischofberger, T.

T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferrometer,” Phys. Rev. A 19, 1169–1176 (1979).
[CrossRef]

Bristow, A. D.

A. D. Bristow, R. Lyer, J. S. Aitchison, H. M. van Driel, and A. L. Smirl, “Switchable AlxGa1−xAs all-optical delay line at 1.55μm,” Appl. Phys. Lett. 90, 101112 (2007).
[CrossRef]

Cassette, S.

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, “Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications,” J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Cestier, I.

Colman, P.

Combrié, S.

M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express 18, 21024–21029 (2010).
[CrossRef] [PubMed]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett. 35, 1440–1442 (2010).
[CrossRef] [PubMed]

I. Cestier, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, and A. De Rossi, “Resonance enhanced large third order nonlinear optical response in slow light GaInP photonic-crystal waveguides,” Opt. Express 18, 5746–5753 (2010).
[CrossRef] [PubMed]

Q. Vy Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

C. Husko, A. De Rossi, S. Combrié, Q. Vy Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
[CrossRef]

S. Combrié, A. De Rossi, Q. Vy Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
[CrossRef] [PubMed]

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, “Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications,” J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

De Rossi, A.

M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express 18, 21024–21029 (2010).
[CrossRef] [PubMed]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett. 35, 1440–1442 (2010).
[CrossRef] [PubMed]

I. Cestier, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, and A. De Rossi, “Resonance enhanced large third order nonlinear optical response in slow light GaInP photonic-crystal waveguides,” Opt. Express 18, 5746–5753 (2010).
[CrossRef] [PubMed]

C. Husko, A. De Rossi, S. Combrié, Q. Vy Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

Q. Vy Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
[CrossRef]

S. Combrié, A. De Rossi, Q. Vy Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
[CrossRef] [PubMed]

Eckhouse, V.

Eisenstein, G.

Farrell, P. M.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron 14, 938–945 (2008).
[CrossRef]

Goldhar, J.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Grover, R.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Hede, M.

M. Mulot, M. Swillo, M. Qiu, M. Strassner, M. Hede, and S. Anand, “Fabry-Pérot cavities based on two-dimensional photonic crystals fabricated in InP membranes,” J. Appl. Phys. 95, 5928–5930 (2004).
[CrossRef]

Hinton, K.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron 14, 938–945 (2008).
[CrossRef]

Ho, P.-T.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Hugonin, J.

Husko, C.

C. Husko, A. De Rossi, S. Combrié, Q. Vy Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
[CrossRef]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Ikeda, N.

In-oue, K.

Ishikawa, H.

Johnson, F. G.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Kanamoto, K.

Kira, G.

Kuramochi, E.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Lalanne, P.

Lecamp, G.

Lecomte, M.

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, “Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications,” J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Lyer, R.

A. D. Bristow, R. Lyer, J. S. Aitchison, H. M. van Driel, and A. L. Smirl, “Switchable AlxGa1−xAs all-optical delay line at 1.55μm,” Appl. Phys. Lett. 90, 101112 (2007).
[CrossRef]

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocaviy,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

Mitsugi, S.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Mulot, M.

M. Mulot, M. Swillo, M. Qiu, M. Strassner, M. Hede, and S. Anand, “Fabry-Pérot cavities based on two-dimensional photonic crystals fabricated in InP membranes,” J. Appl. Phys. 95, 5928–5930 (2004).
[CrossRef]

Nagle, J.

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, “Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications,” J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Nakamura, H.

Nakamura, Y.

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocaviy,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocaviy,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

Ohkouchi, S.

Parillaud, O.

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, “Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications,” J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Qiu, M.

M. Mulot, M. Swillo, M. Qiu, M. Strassner, M. Hede, and S. Anand, “Fabry-Pérot cavities based on two-dimensional photonic crystals fabricated in InP membranes,” J. Appl. Phys. 95, 5928–5930 (2004).
[CrossRef]

M. Qiu, T. Sundström, and U. Andersson, “Radiation losses of air-hole mirrors in a photonic crystal waveguide realized in membrane structures,” 30th European Conference and Exhibition on Optical Communication (ECOC), paper Symposium We2.1.4 (2004).

Raineri, F.

C. Husko, A. De Rossi, S. Combrié, Q. Vy Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

Raskutti, G.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron 14, 938–945 (2008).
[CrossRef]

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Santagiustina, M.

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocaviy,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

Sauvan, C.

Sheik-Bahae, M.

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
[CrossRef]

Shen, Y. R.

T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferrometer,” Phys. Rev. A 19, 1169–1176 (1979).
[CrossRef]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocaviy,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Smirl, A. L.

A. D. Bristow, R. Lyer, J. S. Aitchison, H. M. van Driel, and A. L. Smirl, “Switchable AlxGa1−xAs all-optical delay line at 1.55μm,” Appl. Phys. Lett. 90, 101112 (2007).
[CrossRef]

Someda, C. G.

Stegeman, G.

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
[CrossRef]

Strassner, M.

M. Mulot, M. Swillo, M. Qiu, M. Strassner, M. Hede, and S. Anand, “Fabry-Pérot cavities based on two-dimensional photonic crystals fabricated in InP membranes,” J. Appl. Phys. 95, 5928–5930 (2004).
[CrossRef]

Sugimoto, Y.

Sundström, T.

M. Qiu, T. Sundström, and U. Andersson, “Radiation losses of air-hole mirrors in a photonic crystal waveguide realized in membrane structures,” 30th European Conference and Exhibition on Optical Communication (ECOC), paper Symposium We2.1.4 (2004).

Swillo, M.

M. Mulot, M. Swillo, M. Qiu, M. Strassner, M. Hede, and S. Anand, “Fabry-Pérot cavities based on two-dimensional photonic crystals fabricated in InP membranes,” J. Appl. Phys. 95, 5928–5930 (2004).
[CrossRef]

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocaviy,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Tanaka, Y.

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocaviy,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

Tucker, R. S.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron 14, 938–945 (2008).
[CrossRef]

Vadalà, G.

Van, V.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[CrossRef]

van Driel, H. M.

A. D. Bristow, R. Lyer, J. S. Aitchison, H. M. van Driel, and A. L. Smirl, “Switchable AlxGa1−xAs all-optical delay line at 1.55μm,” Appl. Phys. Lett. 90, 101112 (2007).
[CrossRef]

Van Stryland, E.

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
[CrossRef]

Vy Tran, Q.

S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
[CrossRef]

Q. Vy Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

C. Husko, A. De Rossi, S. Combrié, Q. Vy Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

S. Combrié, A. De Rossi, Q. Vy Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
[CrossRef] [PubMed]

Watanabe, Y.

Wong, C. W.

C. Husko, A. De Rossi, S. Combrié, Q. Vy Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

Q. Vy Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

C. Husko, A. De Rossi, S. Combrié, Q. Vy Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
[CrossRef]

A. D. Bristow, R. Lyer, J. S. Aitchison, H. M. van Driel, and A. L. Smirl, “Switchable AlxGa1−xAs all-optical delay line at 1.55μm,” Appl. Phys. Lett. 90, 101112 (2007).
[CrossRef]

S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron 14, 938–945 (2008).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74–76 (2002).
[CrossRef]

J. Appl. Phys. (1)

M. Mulot, M. Swillo, M. Qiu, M. Strassner, M. Hede, and S. Anand, “Fabry-Pérot cavities based on two-dimensional photonic crystals fabricated in InP membranes,” J. Appl. Phys. 95, 5928–5930 (2004).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, “Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications,” J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Nat. Photonics (1)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocaviy,” Nat. Photonics 4, 477–483 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (1)

T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferrometer,” Phys. Rev. A 19, 1169–1176 (1979).
[CrossRef]

Other (2)

M. Qiu, T. Sundström, and U. Andersson, “Radiation losses of air-hole mirrors in a photonic crystal waveguide realized in membrane structures,” 30th European Conference and Exhibition on Optical Communication (ECOC), paper Symposium We2.1.4 (2004).

Lumerical Solutions, Inc. http://www.lumerical.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structure of the FP resonator with integrated reflectors and mode converters.

Fig. 2
Fig. 2

Power reflectivity spectra of a single mirror for various numbers of holes forming the reflector.

Fig. 3
Fig. 3

Measured transmission spectra for resonators with two (black curve) and three (red curve) holes reflectors.

Fig. 4
Fig. 4

(a) Normalized transmission spectrum of a two holes reflectors based resonator. (b) Extracted group index spectrum (dots) and quadratic fit (solid line). (c) Extracted finesse spectrum. (d) Measured fringes spectral width.

Fig. 5
Fig. 5

(a) Measured static transmission spectrum: pump off (black) and pump on (red). (b) Extracted γ as a function of probe wavelength. Inset: γ dependence on probe group index.

Fig. 6
Fig. 6

(a) Small-signal modulation response of converted probe for various probe fringes. The legend corresponds to the probe spectral widths. The pump fringe is fixed and has a spectral width of 35GHz (b) Converted probe modulation bandwidth dependence on the product of the probe spectral width with the pump spectral width. Dots denote measured values and the solid line is a linear fit.

Fig. 7
Fig. 7

Pump and probe transmission dynamics for 92ps wide pump pulse. (a) Input (solid) and transmitted (dash) pump pulse. (b) Probe transmission for various probe fringe width. Each corresponding wavelength coincides with a fringe valley. (c) Similar to (b) with the wavelength chosen to coincide with a fringe peak. (d) Extracted γ as a function of probe wavelength. The color refers to the fringe width in (b).

Fig. 8
Fig. 8

Switching contrast as function of coupled pump pulse energy for 92ps wide pump pulse. Insert: Time response traces of converted pulses.

Fig. 9
Fig. 9

Pump and probe transmission dynamics for 30ps wide pump pulse.(a) Input (solid) and transmitted (dash) pump pulse. (b) Probe transmission for various coupled pump pulse energy.

Metrics