Abstract

Optical microfibres have recently attracted much attention for nonlinear applications, due to their tight modal confinement. Here, we report broadband third harmonic generation based on the intermodal phase matching technique in silica microfibres of several centimetres. The third harmonic signal is predominantly generated from the taper transition regions (rather than the waist), wherein the range of diameters permits phase matching over a wide bandwidth. Microfibres up to 4.5 cm long were fabricated with waist diameters below 2.5 μm to allow a λ = 1.55 μm pump to phase match with several higher order third harmonic modes; conversion rates up to 3 × 10−4 were recorded when pumped with 4 ns pulses at a peak power of 1.25 kW. Analysis of the third harmonic frequencies generated from the nonlinearly broadened pump components indicate a 5 dB conversion bandwidth of at least 36 nm, with harmonic power detected over a 150 nm range.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Schmid, T. Schneider, and J. Reif, “Optical processing on a femtosecond time scale,” Opt. Commun. 207, 155–160 (2002).
    [CrossRef]
  2. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
    [CrossRef]
  3. H. Endert, M. Scaggs, D. Basting, and U. Stamm, “New ultraviolet lasers for material processing in industrial applications,” J. Laser Appl. 11(1), 1–6 (1999),
    [CrossRef]
  4. D. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (Wiley, 1998).
  5. D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  6. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
    [CrossRef]
  7. S. Afshar and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwave-length structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
    [CrossRef]
  8. V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13, 6798–6806 (2005).
    [CrossRef] [PubMed]
  9. D. Akimov, A. Ivanov, A. Naumov, O. Kolevatova, M. Alfimov, T. Birks, W. Wadsworth, P. Russell, A. Podshivalov, and A. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr: forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).
  10. V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274, 447–450 (2007).
    [CrossRef]
  11. U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of submicrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express 18, 7693–7704 (2010).
    [CrossRef] [PubMed]
  12. A. Coillet, G. Vienne, and P. Grelu, “Potentialities of glass air-clad micro-and nanofibers for nonlinear optics,” J. Opt. Soc. Am. B 27, 394–401 (2010).
    [CrossRef]
  13. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett. 22, 1341–1343 (1997).
    [CrossRef]
  14. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. Sessions, E. Koukharenko, X. Feng, G. Murugan, J. Wilkinson, and D. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009).
    [CrossRef]
  15. A. Snyder and J. Love, Optical Waveguide Theory, 1st ed. (Springer, 1983).
  16. S. Richard, K. Bencheikh, B. Boulanger, and J. A. Levenson, “Semiclassical model of triple photons generation in optical fibers,” Opt. Lett. 36, 3000–3002 (2011).
    [CrossRef] [PubMed]

2011 (1)

2010 (2)

2009 (2)

2007 (2)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
[CrossRef]

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274, 447–450 (2007).
[CrossRef]

2005 (1)

2003 (1)

D. Akimov, A. Ivanov, A. Naumov, O. Kolevatova, M. Alfimov, T. Birks, W. Wadsworth, P. Russell, A. Podshivalov, and A. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr: forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).

2002 (1)

R. P. Schmid, T. Schneider, and J. Reif, “Optical processing on a femtosecond time scale,” Opt. Commun. 207, 155–160 (2002).
[CrossRef]

1997 (2)

Afshar, S.

Akimov, D.

D. Akimov, A. Ivanov, A. Naumov, O. Kolevatova, M. Alfimov, T. Birks, W. Wadsworth, P. Russell, A. Podshivalov, and A. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr: forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).

Alfimov, M.

D. Akimov, A. Ivanov, A. Naumov, O. Kolevatova, M. Alfimov, T. Birks, W. Wadsworth, P. Russell, A. Podshivalov, and A. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr: forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).

Alt, W.

Arbore, M. A.

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Basting, D.

H. Endert, M. Scaggs, D. Basting, and U. Stamm, “New ultraviolet lasers for material processing in industrial applications,” J. Laser Appl. 11(1), 1–6 (1999),
[CrossRef]

Bencheikh, K.

Birks, T.

D. Akimov, A. Ivanov, A. Naumov, O. Kolevatova, M. Alfimov, T. Birks, W. Wadsworth, P. Russell, A. Podshivalov, and A. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr: forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).

Boulanger, B.

Brambilla, G.

Carmon, T.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
[CrossRef]

Chou, M. H.

Coillet, A.

Dan, C.

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Endert, H.

H. Endert, M. Scaggs, D. Basting, and U. Stamm, “New ultraviolet lasers for material processing in industrial applications,” J. Laser Appl. 11(1), 1–6 (1999),
[CrossRef]

Feinberg, J.

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274, 447–450 (2007).
[CrossRef]

Fejer, M. M.

Feng, X.

Galvanauskas, A.

Grelu, P.

Grubsky, V.

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274, 447–450 (2007).
[CrossRef]

V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13, 6798–6806 (2005).
[CrossRef] [PubMed]

Harter, D.

Horak, P.

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Irsen, S.

Ivanov, A.

D. Akimov, A. Ivanov, A. Naumov, O. Kolevatova, M. Alfimov, T. Birks, W. Wadsworth, P. Russell, A. Podshivalov, and A. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr: forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).

Jung, Y.

Karapetyan, K.

Koizumi, F.

Kolevatova, O.

D. Akimov, A. Ivanov, A. Naumov, O. Kolevatova, M. Alfimov, T. Birks, W. Wadsworth, P. Russell, A. Podshivalov, and A. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr: forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).

Koukharenko, E.

Levenson, J. A.

Love, J.

A. Snyder and J. Love, Optical Waveguide Theory, 1st ed. (Springer, 1983).

Meschede, D.

Monro, T. M.

Murugan, G.

Naumov, A.

D. Akimov, A. Ivanov, A. Naumov, O. Kolevatova, M. Alfimov, T. Birks, W. Wadsworth, P. Russell, A. Podshivalov, and A. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr: forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).

Nikogosyan, D.

D. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (Wiley, 1998).

D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Podshivalov, A.

D. Akimov, A. Ivanov, A. Naumov, O. Kolevatova, M. Alfimov, T. Birks, W. Wadsworth, P. Russell, A. Podshivalov, and A. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr: forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).

Pritzkau, D.

Reif, J.

R. P. Schmid, T. Schneider, and J. Reif, “Optical processing on a femtosecond time scale,” Opt. Commun. 207, 155–160 (2002).
[CrossRef]

Richard, S.

Richardson, D.

Russell, P.

D. Akimov, A. Ivanov, A. Naumov, O. Kolevatova, M. Alfimov, T. Birks, W. Wadsworth, P. Russell, A. Podshivalov, and A. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr: forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).

Savchenko, A.

Scaggs, M.

H. Endert, M. Scaggs, D. Basting, and U. Stamm, “New ultraviolet lasers for material processing in industrial applications,” J. Laser Appl. 11(1), 1–6 (1999),
[CrossRef]

Schmid, R. P.

R. P. Schmid, T. Schneider, and J. Reif, “Optical processing on a femtosecond time scale,” Opt. Commun. 207, 155–160 (2002).
[CrossRef]

Schneider, T.

R. P. Schmid, T. Schneider, and J. Reif, “Optical processing on a femtosecond time scale,” Opt. Commun. 207, 155–160 (2002).
[CrossRef]

Sessions, N.

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Snyder, A.

A. Snyder and J. Love, Optical Waveguide Theory, 1st ed. (Springer, 1983).

Stamm, U.

H. Endert, M. Scaggs, D. Basting, and U. Stamm, “New ultraviolet lasers for material processing in industrial applications,” J. Laser Appl. 11(1), 1–6 (1999),
[CrossRef]

Vahala, K. J.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
[CrossRef]

Vienne, G.

Wadsworth, W.

D. Akimov, A. Ivanov, A. Naumov, O. Kolevatova, M. Alfimov, T. Birks, W. Wadsworth, P. Russell, A. Podshivalov, and A. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr: forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).

Wiedemann, U.

Wilkinson, J.

Xu, F.

Zheltikov, A.

D. Akimov, A. Ivanov, A. Naumov, O. Kolevatova, M. Alfimov, T. Birks, W. Wadsworth, P. Russell, A. Podshivalov, and A. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr: forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).

Adv. Opt. Photon. (1)

Appl. Phys. B (1)

D. Akimov, A. Ivanov, A. Naumov, O. Kolevatova, M. Alfimov, T. Birks, W. Wadsworth, P. Russell, A. Podshivalov, and A. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr: forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76, 515–519 (2003).

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

J. Laser Appl. (1)

H. Endert, M. Scaggs, D. Basting, and U. Stamm, “New ultraviolet lasers for material processing in industrial applications,” J. Laser Appl. 11(1), 1–6 (1999),
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
[CrossRef]

Opt. Commun. (2)

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274, 447–450 (2007).
[CrossRef]

R. P. Schmid, T. Schneider, and J. Reif, “Optical processing on a femtosecond time scale,” Opt. Commun. 207, 155–160 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (3)

A. Snyder and J. Love, Optical Waveguide Theory, 1st ed. (Springer, 1983).

D. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (Wiley, 1998).

D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The diameter profile for the transition region of taper A (D = 2.1 μm and L = 45 mm) as characterised through SEM images, showing an exponential decrease in diameter with taper distance. (b–d) SEM images of the taper at the start, transition region and waist.

Fig. 2
Fig. 2

The experimental set up used to excite and detect the third harmonic. The 1.55 μm 4 ns pump pulses are launched into the taper during pulling, whilst the output spectrum is observed on the spectrum analyser.

Fig. 3
Fig. 3

The phase matched pump wavelength (left) against microfibre diameter, when matching to different third harmonic modes. The corresponding distance z along taper A (right) is also shown, and the red dots indicate positions where a λ1 = 1.55 μm pump is phase matched. At each point, the J3 overlap integral is given in italics in units of [μm−2].

Fig. 4
Fig. 4

(a) The pump spectrum measured via a −25dB coupler from the source output and also (b) at the taper output with an input pump wavelength of λ1 = 1.55 μm. (c) the third harmonic spectrum, measured after a shortpass filter with approximately 5 dB loss. (d) The estimated experimental conversion efficiency at each of the pump wavelengths. Taper A parameters: D = 2.1 μm and L = 45 mm.

Fig. 5
Fig. 5

Third harmonic spectrum for different pump powers, showing broad TH signal detectable over 150 nm. Pump wavelength is λ1 = 1.55 μm. Results obtained using taper B (D = 1.8 μm and L = 45 mm).

Fig. 6
Fig. 6

Third harmonic spectrum when the pump wavelength is tuned from 1535 nm to 1560 nm. Pump power is approximately P = 0.6 kW to minimise broadening. Results obtained using taper C (D = 2.4 μm and L = 30 mm).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J 3 = A silica ( F 1 . F 3 ) | F 1 | 2 d A

Metrics