Abstract

We propose an asymmetric quantum well structure to realize strong interaction between two slow optical pulses. The essential idea is the combination of the advantages of inverted-Y type scheme and resonant tunneling. We analytically demonstrate that giant cross-Kerr nonlinearity can be achieved with vanishing absorptions. Owing to resonant tunneling, the contributions of the probe and signal cross-Kerr nonlinearities to total nonlinear phase shift vary from destructive to constrictive, leading to nonlinear phase shift on order of π at low light level. In this structure, the scheme is inherent symmetric for the probe and signal pulses. Consequently, the condition of group velocity matching can be fulfilled with appropriate initial electron distribution.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, U.K., 2000).
  2. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [CrossRef]
  3. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
    [CrossRef]
  4. M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  5. H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
    [CrossRef] [PubMed]
  6. A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94, 063902 (2005).
    [CrossRef] [PubMed]
  7. I. Friedler, G. Kurizki, and D. Petrosyan, “Giant nonlinearity and entanglement of single photons in photonic bandgap structures,” Europhys. Lett. 68, 625–631 (2004).
    [CrossRef]
  8. I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic band gaps,” Phys. Rev. A 71, 023803 (2005).
    [CrossRef]
  9. D. Petrosyan and G. Kurizki, “Photon-photon correlations and entanglement in doped photonic crystals,” Phys. Rev. A 64, 023810 (2001).
    [CrossRef]
  10. D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
    [CrossRef]
  11. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
    [CrossRef] [PubMed]
  12. C. Ottaviani, S. Rebić, D. Vitali, and P. Tombesi, “Cross phase modulation in a fiveClevel atomic medium: semiclassical theory,” Eur. Phys. J. D 40, 281–296 (2006).
    [CrossRef]
  13. S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
    [CrossRef]
  14. D. Petrosyan and Y. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atomsin a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
    [CrossRef]
  15. D. Petrosyan, “Towards deterministic optical quantum computation with coherently driven atomic ensembles,” J. Opt. B: Quantum Semiclass. Opt. 7, S141–S151 (2005).
    [CrossRef]
  16. S. J. Li, X. D. Yang, X. M. Cao, C. H. Zhang, C. D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a Four-Level Tripod Atomic System,” Phys. Rev. Lett. 101, 073602 (2008).
    [CrossRef] [PubMed]
  17. Y. Guo, S. S. Li, and L. M. Kuang, “Large cross-phase shifts among three slow weak pulses via triple electromagnetically induced transparency,” J. Phys. B 44, 065501 (2011).
    [CrossRef]
  18. A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
    [CrossRef]
  19. Y. F. Bai, W. X. Yang, and X. Q. Yu, “Controllable Kerr nonlinearity with vanishing absorption in a four-level inverted-Y atomic system,” Opt. Commun. 283, 5062–5066 (2010).
    [CrossRef]
  20. B.-W. Shiau, M.-C. Wu, C.-C. Lin, and Y.-C. Chen, “Low-light-level cross-phase modulation with double slow light pulses,” Phys. Rev. Lett. 106, 193006 (2011).
    [CrossRef] [PubMed]
  21. Y. Li, C. Hang, L. Ma, and G. X. Huang, “Controllable entanglement of lights in a five-level system,” Phys. Lett. A 354, 1–7 (2006).
    [CrossRef]
  22. B. P. Hou, L. F. Wei, G. L. Long, and S. J. Wang, “Large cross-phase-modulation between two slow pulses by coupled double dark resonances,” Phys. Rev. A 79, 033813 (2009).
    [CrossRef]
  23. I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
    [CrossRef]
  24. E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, “Strongly interacting photons in hollow-core waveguides,” Phys. Rev. A 83, 033806 (2011).
    [CrossRef]
  25. L. Deng and M. G. Payne, “Gain-assisted large and rapidly responding Kerr effect using a room-temperature active Raman gain medium,” Phys. Rev. Lett. 98, 253902 (2007).
    [CrossRef] [PubMed]
  26. C. Hang and G. X. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express 18, 2952–2966 (2010).
    [CrossRef] [PubMed]
  27. C. Hang and G. X. Huang, “Highly entangled photons and rapidly responding polarization qubit phase gates in a room-temperature active Raman gain medium,” Phys. Rev. A 82, 053818 (2010).
    [CrossRef]
  28. B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A 83, 022312 (2011).
    [CrossRef]
  29. B. He, Y. Han, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).
    [CrossRef]
  30. M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
    [CrossRef] [PubMed]
  31. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
    [CrossRef]
  32. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
    [CrossRef] [PubMed]
  33. C. H. Yuan and K. D. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052113 (2006).
    [CrossRef]
  34. E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73, 125344 (2006).
    [CrossRef]
  35. E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
    [CrossRef]
  36. E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
    [CrossRef]
  37. J.-H. Wu, J.-Y. Gao, J.-H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
    [CrossRef]
  38. H. Sun, X.-L. Feng, C. F. Wu, J.-M. Liu, S. Q. Gong, and C. H. Oh, “Optical rotation of heavy hole spins by non-Abelian geometrical means,” Phys. Rev. B 80, 235404 (2009).
    [CrossRef]
  39. C. J. Zhu and G. X. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80, 235408 (2009).
    [CrossRef]
  40. W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
    [CrossRef]
  41. H. Sun, S. Q. Gong, Y. P. Niu, S. Q. Jin, R. X. Li, and Z. Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
    [CrossRef]
  42. S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Kerr nonlinearity in a driven two-subband system in a semiconductor quantum well,” J. Appl. Phys. 109, 084312 (2011).
    [CrossRef]
  43. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vucković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
    [CrossRef] [PubMed]
  44. H. Sun, X. L. Feng, S. Q. Gong, and C. H. Oh, “Giant cross-Kerr nonlinearity in carbon nanotube quantum dots with spin-orbit coupling,” Phys. Rev. B 79, 193404 (2009).
    [CrossRef]
  45. J. J. Li, W. He, and K. D. Zhu, “All-optical Kerr modulator based on a carbon nanotube resonator,” Phys. Rev. B 83, 115445 (2011).
    [CrossRef]
  46. W.-X. Yang and R.-K. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express 16, 17161–17170 (2008).
    [CrossRef] [PubMed]
  47. X. Y. Hao, L. G. Si, C. L. Ding, P. Huang, J. H. Li, and X. X. Yang, “Polarization qubit phase gate between two far-infrared pulses in three-coupled quantum wells,” J. Opt. Soc. Am. B 27, 1792–1798 (2010).
    [CrossRef]
  48. H. Sun, Y. P. Niu, R. X. Li, S. Q. Jin, and S. Q. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
    [CrossRef] [PubMed]
  49. D. Ahn and S. L. Chuang, “Exact calculations of quasibound states of an isolated quantum well with uniform electric field: Quantum-well stark resonance,” Phys. Rev. B 34, R9034–R9037 (1986).
    [CrossRef]
  50. J. B. Williams, M. S. Sherwin, K. D. Maranowski, and A. C. Gossard, “Dissipation of intersubband plasmons in wide quantum wells,” Phys. Rev. Lett. 87, 037401 (2001).
    [CrossRef] [PubMed]
  51. S. Q. Jin, S. Q. Gong, R. X. Li, and Z. Z. Xu, “Coherent population transfer and superposition of atomic states via stimulated Raman adiabatic passage using an excited-doublet four-level atom,” Phys. Rev. A 69, 023408 (2004).
    [CrossRef]

2011 (7)

Y. Guo, S. S. Li, and L. M. Kuang, “Large cross-phase shifts among three slow weak pulses via triple electromagnetically induced transparency,” J. Phys. B 44, 065501 (2011).
[CrossRef]

B.-W. Shiau, M.-C. Wu, C.-C. Lin, and Y.-C. Chen, “Low-light-level cross-phase modulation with double slow light pulses,” Phys. Rev. Lett. 106, 193006 (2011).
[CrossRef] [PubMed]

E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, “Strongly interacting photons in hollow-core waveguides,” Phys. Rev. A 83, 033806 (2011).
[CrossRef]

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A 83, 022312 (2011).
[CrossRef]

B. He, Y. Han, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).
[CrossRef]

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Kerr nonlinearity in a driven two-subband system in a semiconductor quantum well,” J. Appl. Phys. 109, 084312 (2011).
[CrossRef]

J. J. Li, W. He, and K. D. Zhu, “All-optical Kerr modulator based on a carbon nanotube resonator,” Phys. Rev. B 83, 115445 (2011).
[CrossRef]

2010 (4)

C. Hang and G. X. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express 18, 2952–2966 (2010).
[CrossRef] [PubMed]

X. Y. Hao, L. G. Si, C. L. Ding, P. Huang, J. H. Li, and X. X. Yang, “Polarization qubit phase gate between two far-infrared pulses in three-coupled quantum wells,” J. Opt. Soc. Am. B 27, 1792–1798 (2010).
[CrossRef]

Y. F. Bai, W. X. Yang, and X. Q. Yu, “Controllable Kerr nonlinearity with vanishing absorption in a four-level inverted-Y atomic system,” Opt. Commun. 283, 5062–5066 (2010).
[CrossRef]

C. Hang and G. X. Huang, “Highly entangled photons and rapidly responding polarization qubit phase gates in a room-temperature active Raman gain medium,” Phys. Rev. A 82, 053818 (2010).
[CrossRef]

2009 (4)

H. Sun, X.-L. Feng, C. F. Wu, J.-M. Liu, S. Q. Gong, and C. H. Oh, “Optical rotation of heavy hole spins by non-Abelian geometrical means,” Phys. Rev. B 80, 235404 (2009).
[CrossRef]

C. J. Zhu and G. X. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80, 235408 (2009).
[CrossRef]

B. P. Hou, L. F. Wei, G. L. Long, and S. J. Wang, “Large cross-phase-modulation between two slow pulses by coupled double dark resonances,” Phys. Rev. A 79, 033813 (2009).
[CrossRef]

H. Sun, X. L. Feng, S. Q. Gong, and C. H. Oh, “Giant cross-Kerr nonlinearity in carbon nanotube quantum dots with spin-orbit coupling,” Phys. Rev. B 79, 193404 (2009).
[CrossRef]

2008 (4)

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vucković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

W.-X. Yang and R.-K. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express 16, 17161–17170 (2008).
[CrossRef] [PubMed]

S. J. Li, X. D. Yang, X. M. Cao, C. H. Zhang, C. D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a Four-Level Tripod Atomic System,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

2007 (3)

L. Deng and M. G. Payne, “Gain-assisted large and rapidly responding Kerr effect using a room-temperature active Raman gain medium,” Phys. Rev. Lett. 98, 253902 (2007).
[CrossRef] [PubMed]

H. Sun, Y. P. Niu, R. X. Li, S. Q. Jin, and S. Q. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
[CrossRef] [PubMed]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

2006 (7)

H. Sun, S. Q. Gong, Y. P. Niu, S. Q. Jin, R. X. Li, and Z. Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

C. H. Yuan and K. D. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052113 (2006).
[CrossRef]

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73, 125344 (2006).
[CrossRef]

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

J.-H. Wu, J.-Y. Gao, J.-H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

Y. Li, C. Hang, L. Ma, and G. X. Huang, “Controllable entanglement of lights in a five-level system,” Phys. Lett. A 354, 1–7 (2006).
[CrossRef]

C. Ottaviani, S. Rebić, D. Vitali, and P. Tombesi, “Cross phase modulation in a fiveClevel atomic medium: semiclassical theory,” Eur. Phys. J. D 40, 281–296 (2006).
[CrossRef]

2005 (7)

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94, 063902 (2005).
[CrossRef] [PubMed]

I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic band gaps,” Phys. Rev. A 71, 023803 (2005).
[CrossRef]

I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
[CrossRef]

D. Petrosyan, “Towards deterministic optical quantum computation with coherently driven atomic ensembles,” J. Opt. B: Quantum Semiclass. Opt. 7, S141–S151 (2005).
[CrossRef]

A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

2004 (5)

S. Q. Jin, S. Q. Gong, R. X. Li, and Z. Z. Xu, “Coherent population transfer and superposition of atomic states via stimulated Raman adiabatic passage using an excited-doublet four-level atom,” Phys. Rev. A 69, 023408 (2004).
[CrossRef]

I. Friedler, G. Kurizki, and D. Petrosyan, “Giant nonlinearity and entanglement of single photons in photonic bandgap structures,” Europhys. Lett. 68, 625–631 (2004).
[CrossRef]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

D. Petrosyan and Y. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atomsin a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
[CrossRef]

E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
[CrossRef]

2003 (2)

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef] [PubMed]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

2002 (1)

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
[CrossRef]

2001 (2)

D. Petrosyan and G. Kurizki, “Photon-photon correlations and entanglement in doped photonic crystals,” Phys. Rev. A 64, 023810 (2001).
[CrossRef]

J. B. Williams, M. S. Sherwin, K. D. Maranowski, and A. C. Gossard, “Dissipation of intersubband plasmons in wide quantum wells,” Phys. Rev. Lett. 87, 037401 (2001).
[CrossRef] [PubMed]

1999 (1)

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

1997 (1)

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

1996 (1)

1986 (1)

D. Ahn and S. L. Chuang, “Exact calculations of quasibound states of an isolated quantum well with uniform electric field: Quantum-well stark resonance,” Phys. Rev. B 34, R9034–R9037 (1986).
[CrossRef]

Ahn, D.

D. Ahn and S. L. Chuang, “Exact calculations of quasibound states of an isolated quantum well with uniform electric field: Quantum-well stark resonance,” Phys. Rev. B 34, R9034–R9037 (1986).
[CrossRef]

André, A.

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94, 063902 (2005).
[CrossRef] [PubMed]

Artoni, M.

J.-H. Wu, J.-Y. Gao, J.-H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Bai, Y. F.

Y. F. Bai, W. X. Yang, and X. Q. Yu, “Controllable Kerr nonlinearity with vanishing absorption in a four-level inverted-Y atomic system,” Opt. Commun. 283, 5062–5066 (2010).
[CrossRef]

Bajcsy, M.

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94, 063902 (2005).
[CrossRef] [PubMed]

Bassani, F.

J.-H. Wu, J.-Y. Gao, J.-H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

Binder, R.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef] [PubMed]

Campman, K. L.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

Cao, X. M.

S. J. Li, X. D. Yang, X. M. Cao, C. H. Zhang, C. D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a Four-Level Tripod Atomic System,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Cataliotti, F.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Chen, Y.-C.

B.-W. Shiau, M.-C. Wu, C.-C. Lin, and Y.-C. Chen, “Low-light-level cross-phase modulation with double slow light pulses,” Phys. Rev. Lett. 106, 193006 (2011).
[CrossRef] [PubMed]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, U.K., 2000).

Chuang, S. L.

D. Ahn and S. L. Chuang, “Exact calculations of quasibound states of an isolated quantum well with uniform electric field: Quantum-well stark resonance,” Phys. Rev. B 34, R9034–R9037 (1986).
[CrossRef]

Corbalán, R.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Deng, L.

L. Deng and M. G. Payne, “Gain-assisted large and rapidly responding Kerr effect using a room-temperature active Raman gain medium,” Phys. Rev. Lett. 98, 253902 (2007).
[CrossRef] [PubMed]

Ding, C. L.

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Englund, D.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vucković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Faraon, A.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vucković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Feng, X. L.

H. Sun, X. L. Feng, S. Q. Gong, and C. H. Oh, “Giant cross-Kerr nonlinearity in carbon nanotube quantum dots with spin-orbit coupling,” Phys. Rev. B 79, 193404 (2009).
[CrossRef]

Feng, X.-L.

H. Sun, X.-L. Feng, C. F. Wu, J.-M. Liu, S. Q. Gong, and C. H. Oh, “Optical rotation of heavy hole spins by non-Abelian geometrical means,” Phys. Rev. B 80, 235404 (2009).
[CrossRef]

Fleischhauer, M.

E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, “Strongly interacting photons in hollow-core waveguides,” Phys. Rev. A 83, 033806 (2011).
[CrossRef]

I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Friedler, I.

I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic band gaps,” Phys. Rev. A 71, 023803 (2005).
[CrossRef]

I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
[CrossRef]

I. Friedler, G. Kurizki, and D. Petrosyan, “Giant nonlinearity and entanglement of single photons in photonic bandgap structures,” Europhys. Lett. 68, 625–631 (2004).
[CrossRef]

Fushman, I.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vucković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Gao, J. Y.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

Gao, J.-Y.

J.-H. Wu, J.-Y. Gao, J.-H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

Gong, S. Q.

H. Sun, X. L. Feng, S. Q. Gong, and C. H. Oh, “Giant cross-Kerr nonlinearity in carbon nanotube quantum dots with spin-orbit coupling,” Phys. Rev. B 79, 193404 (2009).
[CrossRef]

H. Sun, X.-L. Feng, C. F. Wu, J.-M. Liu, S. Q. Gong, and C. H. Oh, “Optical rotation of heavy hole spins by non-Abelian geometrical means,” Phys. Rev. B 80, 235404 (2009).
[CrossRef]

H. Sun, Y. P. Niu, R. X. Li, S. Q. Jin, and S. Q. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
[CrossRef] [PubMed]

H. Sun, S. Q. Gong, Y. P. Niu, S. Q. Jin, R. X. Li, and Z. Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

S. Q. Jin, S. Q. Gong, R. X. Li, and Z. Z. Xu, “Coherent population transfer and superposition of atomic states via stimulated Raman adiabatic passage using an excited-doublet four-level atom,” Phys. Rev. A 69, 023408 (2004).
[CrossRef]

Gossard, A. C.

J. B. Williams, M. S. Sherwin, K. D. Maranowski, and A. C. Gossard, “Dissipation of intersubband plasmons in wide quantum wells,” Phys. Rev. Lett. 87, 037401 (2001).
[CrossRef] [PubMed]

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

Guo, Y.

Y. Guo, S. S. Li, and L. M. Kuang, “Large cross-phase shifts among three slow weak pulses via triple electromagnetically induced transparency,” J. Phys. B 44, 065501 (2011).
[CrossRef]

Han, Y.

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A 83, 022312 (2011).
[CrossRef]

B. He, Y. Han, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).
[CrossRef]

Hang, C.

C. Hang and G. X. Huang, “Highly entangled photons and rapidly responding polarization qubit phase gates in a room-temperature active Raman gain medium,” Phys. Rev. A 82, 053818 (2010).
[CrossRef]

C. Hang and G. X. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express 18, 2952–2966 (2010).
[CrossRef] [PubMed]

Y. Li, C. Hang, L. Ma, and G. X. Huang, “Controllable entanglement of lights in a five-level system,” Phys. Lett. A 354, 1–7 (2006).
[CrossRef]

Hao, X. Y.

Harris, S. E.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

Hau, L. V.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

He, B.

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A 83, 022312 (2011).
[CrossRef]

B. He, Y. Han, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).
[CrossRef]

He, W.

J. J. Li, W. He, and K. D. Zhu, “All-optical Kerr modulator based on a carbon nanotube resonator,” Phys. Rev. B 83, 115445 (2011).
[CrossRef]

Hou, B. P.

B. P. Hou, L. F. Wei, G. L. Long, and S. J. Wang, “Large cross-phase-modulation between two slow pulses by coupled double dark resonances,” Phys. Rev. A 79, 033813 (2009).
[CrossRef]

Hou, J.-M.

W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

Huang, G. X.

C. Hang and G. X. Huang, “Highly entangled photons and rapidly responding polarization qubit phase gates in a room-temperature active Raman gain medium,” Phys. Rev. A 82, 053818 (2010).
[CrossRef]

C. Hang and G. X. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express 18, 2952–2966 (2010).
[CrossRef] [PubMed]

C. J. Zhu and G. X. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80, 235408 (2009).
[CrossRef]

Y. Li, C. Hang, L. Ma, and G. X. Huang, “Controllable entanglement of lights in a five-level system,” Phys. Lett. A 354, 1–7 (2006).
[CrossRef]

Huang, P.

Imamoglu, A.

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
[CrossRef] [PubMed]

Jin, S. Q.

H. Sun, Y. P. Niu, R. X. Li, S. Q. Jin, and S. Q. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
[CrossRef] [PubMed]

H. Sun, S. Q. Gong, Y. P. Niu, S. Q. Jin, R. X. Li, and Z. Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

S. Q. Jin, S. Q. Gong, R. X. Li, and Z. Z. Xu, “Coherent population transfer and superposition of atomic states via stimulated Raman adiabatic passage using an excited-doublet four-level atom,” Phys. Rev. A 69, 023408 (2004).
[CrossRef]

Joshi, A.

A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
[CrossRef]

Kalini, A.

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

Kis, Z.

E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
[CrossRef]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Kosionis, S. G.

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Kerr nonlinearity in a driven two-subband system in a semiconductor quantum well,” J. Appl. Phys. 109, 084312 (2011).
[CrossRef]

Kuang, L. M.

Y. Guo, S. S. Li, and L. M. Kuang, “Large cross-phase shifts among three slow weak pulses via triple electromagnetically induced transparency,” J. Phys. B 44, 065501 (2011).
[CrossRef]

Kurizki, G.

E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, “Strongly interacting photons in hollow-core waveguides,” Phys. Rev. A 83, 033806 (2011).
[CrossRef]

I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
[CrossRef]

I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic band gaps,” Phys. Rev. A 71, 023803 (2005).
[CrossRef]

I. Friedler, G. Kurizki, and D. Petrosyan, “Giant nonlinearity and entanglement of single photons in photonic bandgap structures,” Europhys. Lett. 68, 625–631 (2004).
[CrossRef]

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
[CrossRef]

D. Petrosyan and G. Kurizki, “Photon-photon correlations and entanglement in doped photonic crystals,” Phys. Rev. A 64, 023810 (2001).
[CrossRef]

Kwong, N. H.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef] [PubMed]

La Rocca, G. C.

J.-H. Wu, J.-Y. Gao, J.-H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

Lee, R.-K.

W.-X. Yang and R.-K. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express 16, 17161–17170 (2008).
[CrossRef] [PubMed]

W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

Li, J. H.

Li, J. J.

J. J. Li, W. He, and K. D. Zhu, “All-optical Kerr modulator based on a carbon nanotube resonator,” Phys. Rev. B 83, 115445 (2011).
[CrossRef]

Li, R. X.

H. Sun, Y. P. Niu, R. X. Li, S. Q. Jin, and S. Q. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
[CrossRef] [PubMed]

H. Sun, S. Q. Gong, Y. P. Niu, S. Q. Jin, R. X. Li, and Z. Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

S. Q. Jin, S. Q. Gong, R. X. Li, and Z. Z. Xu, “Coherent population transfer and superposition of atomic states via stimulated Raman adiabatic passage using an excited-doublet four-level atom,” Phys. Rev. A 69, 023408 (2004).
[CrossRef]

Li, S. J.

S. J. Li, X. D. Yang, X. M. Cao, C. H. Zhang, C. D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a Four-Level Tripod Atomic System,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Li, S. S.

Y. Guo, S. S. Li, and L. M. Kuang, “Large cross-phase shifts among three slow weak pulses via triple electromagnetically induced transparency,” J. Phys. B 44, 065501 (2011).
[CrossRef]

Li, Y.

Y. Li, C. Hang, L. Ma, and G. X. Huang, “Controllable entanglement of lights in a five-level system,” Phys. Lett. A 354, 1–7 (2006).
[CrossRef]

Lin, C.-C.

B.-W. Shiau, M.-C. Wu, C.-C. Lin, and Y.-C. Chen, “Low-light-level cross-phase modulation with double slow light pulses,” Phys. Rev. Lett. 106, 193006 (2011).
[CrossRef] [PubMed]

Liu, J.-M.

H. Sun, X.-L. Feng, C. F. Wu, J.-M. Liu, S. Q. Gong, and C. H. Oh, “Optical rotation of heavy hole spins by non-Abelian geometrical means,” Phys. Rev. B 80, 235404 (2009).
[CrossRef]

Long, G. L.

B. P. Hou, L. F. Wei, G. L. Long, and S. J. Wang, “Large cross-phase-modulation between two slow pulses by coupled double dark resonances,” Phys. Rev. A 79, 033813 (2009).
[CrossRef]

Lukin, M. D.

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94, 063902 (2005).
[CrossRef] [PubMed]

Lvovsky, A. I.

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A 83, 022312 (2011).
[CrossRef]

Ma, L.

Y. Li, C. Hang, L. Ma, and G. X. Huang, “Controllable entanglement of lights in a five-level system,” Phys. Lett. A 354, 1–7 (2006).
[CrossRef]

MacRae, A.

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A 83, 022312 (2011).
[CrossRef]

Malakyan, Y. P.

D. Petrosyan and Y. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atomsin a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Maranowski, K. D.

J. B. Williams, M. S. Sherwin, K. D. Maranowski, and A. C. Gossard, “Dissipation of intersubband plasmons in wide quantum wells,” Phys. Rev. Lett. 87, 037401 (2001).
[CrossRef] [PubMed]

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, U.K., 2000).

Niu, Y. P.

H. Sun, Y. P. Niu, R. X. Li, S. Q. Jin, and S. Q. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
[CrossRef] [PubMed]

H. Sun, S. Q. Gong, Y. P. Niu, S. Q. Jin, R. X. Li, and Z. Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Oh, C. H.

H. Sun, X.-L. Feng, C. F. Wu, J.-M. Liu, S. Q. Gong, and C. H. Oh, “Optical rotation of heavy hole spins by non-Abelian geometrical means,” Phys. Rev. B 80, 235404 (2009).
[CrossRef]

H. Sun, X. L. Feng, S. Q. Gong, and C. H. Oh, “Giant cross-Kerr nonlinearity in carbon nanotube quantum dots with spin-orbit coupling,” Phys. Rev. B 79, 193404 (2009).
[CrossRef]

Ottaviani, C.

C. Ottaviani, S. Rebić, D. Vitali, and P. Tombesi, “Cross phase modulation in a fiveClevel atomic medium: semiclassical theory,” Eur. Phys. J. D 40, 281–296 (2006).
[CrossRef]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Paspalakis, E.

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Kerr nonlinearity in a driven two-subband system in a semiconductor quantum well,” J. Appl. Phys. 109, 084312 (2011).
[CrossRef]

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73, 125344 (2006).
[CrossRef]

E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
[CrossRef]

Payne, M. G.

L. Deng and M. G. Payne, “Gain-assisted large and rapidly responding Kerr effect using a room-temperature active Raman gain medium,” Phys. Rev. Lett. 98, 253902 (2007).
[CrossRef] [PubMed]

Petroff, P.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vucković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Petrosyan, D.

E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, “Strongly interacting photons in hollow-core waveguides,” Phys. Rev. A 83, 033806 (2011).
[CrossRef]

D. Petrosyan, “Towards deterministic optical quantum computation with coherently driven atomic ensembles,” J. Opt. B: Quantum Semiclass. Opt. 7, S141–S151 (2005).
[CrossRef]

I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
[CrossRef]

I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic band gaps,” Phys. Rev. A 71, 023803 (2005).
[CrossRef]

D. Petrosyan and Y. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atomsin a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
[CrossRef]

I. Friedler, G. Kurizki, and D. Petrosyan, “Giant nonlinearity and entanglement of single photons in photonic bandgap structures,” Europhys. Lett. 68, 625–631 (2004).
[CrossRef]

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
[CrossRef]

D. Petrosyan and G. Kurizki, “Photon-photon correlations and entanglement in doped photonic crystals,” Phys. Rev. A 64, 023810 (2001).
[CrossRef]

Phillips, M. C.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef] [PubMed]

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Rebic, S.

C. Ottaviani, S. Rebić, D. Vitali, and P. Tombesi, “Cross phase modulation in a fiveClevel atomic medium: semiclassical theory,” Eur. Phys. J. D 40, 281–296 (2006).
[CrossRef]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Rumyantsev, I.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef] [PubMed]

Schmidt, H.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
[CrossRef] [PubMed]

Shahmoon, E.

E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, “Strongly interacting photons in hollow-core waveguides,” Phys. Rev. A 83, 033806 (2011).
[CrossRef]

Sherwin, M. S.

J. B. Williams, M. S. Sherwin, K. D. Maranowski, and A. C. Gossard, “Dissipation of intersubband plasmons in wide quantum wells,” Phys. Rev. Lett. 87, 037401 (2001).
[CrossRef] [PubMed]

Shiau, B.-W.

B.-W. Shiau, M.-C. Wu, C.-C. Lin, and Y.-C. Chen, “Low-light-level cross-phase modulation with double slow light pulses,” Phys. Rev. Lett. 106, 193006 (2011).
[CrossRef] [PubMed]

Si, L. G.

Silvestri, L.

J.-H. Wu, J.-Y. Gao, J.-H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

Simon, C.

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A 83, 022312 (2011).
[CrossRef]

B. He, Y. Han, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).
[CrossRef]

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vucković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Sun, H.

H. Sun, X.-L. Feng, C. F. Wu, J.-M. Liu, S. Q. Gong, and C. H. Oh, “Optical rotation of heavy hole spins by non-Abelian geometrical means,” Phys. Rev. B 80, 235404 (2009).
[CrossRef]

H. Sun, X. L. Feng, S. Q. Gong, and C. H. Oh, “Giant cross-Kerr nonlinearity in carbon nanotube quantum dots with spin-orbit coupling,” Phys. Rev. B 79, 193404 (2009).
[CrossRef]

H. Sun, Y. P. Niu, R. X. Li, S. Q. Jin, and S. Q. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
[CrossRef] [PubMed]

H. Sun, S. Q. Gong, Y. P. Niu, S. Q. Jin, R. X. Li, and Z. Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Takayama, R.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef] [PubMed]

Terzis, A. F.

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Kerr nonlinearity in a driven two-subband system in a semiconductor quantum well,” J. Appl. Phys. 109, 084312 (2011).
[CrossRef]

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73, 125344 (2006).
[CrossRef]

E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
[CrossRef]

Tombesi, P.

C. Ottaviani, S. Rebić, D. Vitali, and P. Tombesi, “Cross phase modulation in a fiveClevel atomic medium: semiclassical theory,” Eur. Phys. J. D 40, 281–296 (2006).
[CrossRef]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Tsaousidou, M.

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73, 125344 (2006).
[CrossRef]

Vitali, D.

C. Ottaviani, S. Rebić, D. Vitali, and P. Tombesi, “Cross phase modulation in a fiveClevel atomic medium: semiclassical theory,” Eur. Phys. J. D 40, 281–296 (2006).
[CrossRef]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Voutsinas, E.

E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
[CrossRef]

Vuckovic, J.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vucković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Wang, H.

S. J. Li, X. D. Yang, X. M. Cao, C. H. Zhang, C. D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a Four-Level Tripod Atomic System,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef] [PubMed]

Wang, S. J.

B. P. Hou, L. F. Wei, G. L. Long, and S. J. Wang, “Large cross-phase-modulation between two slow pulses by coupled double dark resonances,” Phys. Rev. A 79, 033813 (2009).
[CrossRef]

Wei, L. F.

B. P. Hou, L. F. Wei, G. L. Long, and S. J. Wang, “Large cross-phase-modulation between two slow pulses by coupled double dark resonances,” Phys. Rev. A 79, 033813 (2009).
[CrossRef]

Williams, J. B.

J. B. Williams, M. S. Sherwin, K. D. Maranowski, and A. C. Gossard, “Dissipation of intersubband plasmons in wide quantum wells,” Phys. Rev. Lett. 87, 037401 (2001).
[CrossRef] [PubMed]

Wu, C. F.

H. Sun, X.-L. Feng, C. F. Wu, J.-M. Liu, S. Q. Gong, and C. H. Oh, “Optical rotation of heavy hole spins by non-Abelian geometrical means,” Phys. Rev. B 80, 235404 (2009).
[CrossRef]

Wu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

Wu, J.-H.

J.-H. Wu, J.-Y. Gao, J.-H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

Wu, M.-C.

B.-W. Shiau, M.-C. Wu, C.-C. Lin, and Y.-C. Chen, “Low-light-level cross-phase modulation with double slow light pulses,” Phys. Rev. Lett. 106, 193006 (2011).
[CrossRef] [PubMed]

Xiao, M.

A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
[CrossRef]

Xie, C. D.

S. J. Li, X. D. Yang, X. M. Cao, C. H. Zhang, C. D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a Four-Level Tripod Atomic System,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Xu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

Xu, J.-H.

J.-H. Wu, J.-Y. Gao, J.-H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

Xu, Z. Z.

H. Sun, S. Q. Gong, Y. P. Niu, S. Q. Jin, R. X. Li, and Z. Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

S. Q. Jin, S. Q. Gong, R. X. Li, and Z. Z. Xu, “Coherent population transfer and superposition of atomic states via stimulated Raman adiabatic passage using an excited-doublet four-level atom,” Phys. Rev. A 69, 023408 (2004).
[CrossRef]

Yang, W. X.

Y. F. Bai, W. X. Yang, and X. Q. Yu, “Controllable Kerr nonlinearity with vanishing absorption in a four-level inverted-Y atomic system,” Opt. Commun. 283, 5062–5066 (2010).
[CrossRef]

Yang, W.-X.

W.-X. Yang and R.-K. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express 16, 17161–17170 (2008).
[CrossRef] [PubMed]

W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

Yang, X. D.

S. J. Li, X. D. Yang, X. M. Cao, C. H. Zhang, C. D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a Four-Level Tripod Atomic System,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Yang, X. X.

Yu, X. Q.

Y. F. Bai, W. X. Yang, and X. Q. Yu, “Controllable Kerr nonlinearity with vanishing absorption in a four-level inverted-Y atomic system,” Opt. Commun. 283, 5062–5066 (2010).
[CrossRef]

Yuan, C. H.

C. H. Yuan and K. D. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052113 (2006).
[CrossRef]

Zhang, C. H.

S. J. Li, X. D. Yang, X. M. Cao, C. H. Zhang, C. D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a Four-Level Tripod Atomic System,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Zhu, C. J.

C. J. Zhu and G. X. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80, 235408 (2009).
[CrossRef]

Zhu, K. D.

J. J. Li, W. He, and K. D. Zhu, “All-optical Kerr modulator based on a carbon nanotube resonator,” Phys. Rev. B 83, 115445 (2011).
[CrossRef]

C. H. Yuan and K. D. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052113 (2006).
[CrossRef]

Zibrov, A. S.

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94, 063902 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

C. H. Yuan and K. D. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052113 (2006).
[CrossRef]

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

Eur. Phys. J. D (1)

C. Ottaviani, S. Rebić, D. Vitali, and P. Tombesi, “Cross phase modulation in a fiveClevel atomic medium: semiclassical theory,” Eur. Phys. J. D 40, 281–296 (2006).
[CrossRef]

Europhys. Lett. (1)

I. Friedler, G. Kurizki, and D. Petrosyan, “Giant nonlinearity and entanglement of single photons in photonic bandgap structures,” Europhys. Lett. 68, 625–631 (2004).
[CrossRef]

J. Appl. Phys. (1)

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Kerr nonlinearity in a driven two-subband system in a semiconductor quantum well,” J. Appl. Phys. 109, 084312 (2011).
[CrossRef]

J. Opt. B: Quantum Semiclass. Opt. (1)

D. Petrosyan, “Towards deterministic optical quantum computation with coherently driven atomic ensembles,” J. Opt. B: Quantum Semiclass. Opt. 7, S141–S151 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

Y. Guo, S. S. Li, and L. M. Kuang, “Large cross-phase shifts among three slow weak pulses via triple electromagnetically induced transparency,” J. Phys. B 44, 065501 (2011).
[CrossRef]

Opt. Commun. (1)

Y. F. Bai, W. X. Yang, and X. Q. Yu, “Controllable Kerr nonlinearity with vanishing absorption in a four-level inverted-Y atomic system,” Opt. Commun. 283, 5062–5066 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Lett. A (1)

Y. Li, C. Hang, L. Ma, and G. X. Huang, “Controllable entanglement of lights in a five-level system,” Phys. Lett. A 354, 1–7 (2006).
[CrossRef]

Phys. Rev. A (15)

B. P. Hou, L. F. Wei, G. L. Long, and S. J. Wang, “Large cross-phase-modulation between two slow pulses by coupled double dark resonances,” Phys. Rev. A 79, 033813 (2009).
[CrossRef]

I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
[CrossRef]

E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, “Strongly interacting photons in hollow-core waveguides,” Phys. Rev. A 83, 033806 (2011).
[CrossRef]

A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
[CrossRef]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

D. Petrosyan and Y. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atomsin a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
[CrossRef]

I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic band gaps,” Phys. Rev. A 71, 023803 (2005).
[CrossRef]

D. Petrosyan and G. Kurizki, “Photon-photon correlations and entanglement in doped photonic crystals,” Phys. Rev. A 64, 023810 (2001).
[CrossRef]

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
[CrossRef]

W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

J.-H. Wu, J.-Y. Gao, J.-H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

C. Hang and G. X. Huang, “Highly entangled photons and rapidly responding polarization qubit phase gates in a room-temperature active Raman gain medium,” Phys. Rev. A 82, 053818 (2010).
[CrossRef]

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A 83, 022312 (2011).
[CrossRef]

B. He, Y. Han, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).
[CrossRef]

S. Q. Jin, S. Q. Gong, R. X. Li, and Z. Z. Xu, “Coherent population transfer and superposition of atomic states via stimulated Raman adiabatic passage using an excited-doublet four-level atom,” Phys. Rev. A 69, 023408 (2004).
[CrossRef]

Phys. Rev. B (9)

H. Sun, X. L. Feng, S. Q. Gong, and C. H. Oh, “Giant cross-Kerr nonlinearity in carbon nanotube quantum dots with spin-orbit coupling,” Phys. Rev. B 79, 193404 (2009).
[CrossRef]

J. J. Li, W. He, and K. D. Zhu, “All-optical Kerr modulator based on a carbon nanotube resonator,” Phys. Rev. B 83, 115445 (2011).
[CrossRef]

D. Ahn and S. L. Chuang, “Exact calculations of quasibound states of an isolated quantum well with uniform electric field: Quantum-well stark resonance,” Phys. Rev. B 34, R9034–R9037 (1986).
[CrossRef]

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73, 125344 (2006).
[CrossRef]

E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004).
[CrossRef]

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

H. Sun, X.-L. Feng, C. F. Wu, J.-M. Liu, S. Q. Gong, and C. H. Oh, “Optical rotation of heavy hole spins by non-Abelian geometrical means,” Phys. Rev. B 80, 235404 (2009).
[CrossRef]

C. J. Zhu and G. X. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80, 235408 (2009).
[CrossRef]

H. Sun, S. Q. Gong, Y. P. Niu, S. Q. Jin, R. X. Li, and Z. Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006).
[CrossRef]

Phys. Rev. Lett. (9)

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef] [PubMed]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef] [PubMed]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

S. J. Li, X. D. Yang, X. M. Cao, C. H. Zhang, C. D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a Four-Level Tripod Atomic System,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

B.-W. Shiau, M.-C. Wu, C.-C. Lin, and Y.-C. Chen, “Low-light-level cross-phase modulation with double slow light pulses,” Phys. Rev. Lett. 106, 193006 (2011).
[CrossRef] [PubMed]

L. Deng and M. G. Payne, “Gain-assisted large and rapidly responding Kerr effect using a room-temperature active Raman gain medium,” Phys. Rev. Lett. 98, 253902 (2007).
[CrossRef] [PubMed]

J. B. Williams, M. S. Sherwin, K. D. Maranowski, and A. C. Gossard, “Dissipation of intersubband plasmons in wide quantum wells,” Phys. Rev. Lett. 87, 037401 (2001).
[CrossRef] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94, 063902 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys. (2)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Science (1)

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vucković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Other (1)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, U.K., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(color online) Conduction subband of the asymmetric quantum well structure. The solid curves represent the corresponding wave functions.

Fig. 2
Fig. 2

(color online) The group velocities of the probe (solid) and the signal (dashed) pulses as functions of σ 11 ( 0 ). The parameters are explained in the text.

Fig. 3
Fig. 3

(color online) The linear absorption (solid curve) and dispersion (dashed curve) of the probe (a) and the signal fields (b) as functions of their corresponding detunings Δp and Δs with σ 11 ( 0 ) 0.27. The detunings are chosen as (a) Δs = δ/2 = 3.65 meV, (b) Δp = 3.6505 meV. The other parameters are the same with those in Fig. 2.

Fig. 4
Fig. 4

(color online) (a) Re [ χ p ( 3 ) ] with (solid) and without (longdashed) the control field and Im [ χ p ( 3 ) ] (dashed) versus Δp; (b) Re [ χ s ( 3 ) ] with (solid) and without (longdashed) the control field and Im [ χ s ( 3 ) ] (dashed) versus Δs; (c) Re [ χ p ( 3 ) ] (solid) and Im [ χ p ( 3 ) ] (dashed) versus Δp without tunneling by setting m = q = k = 0; (d) Re [ χ s ( 3 ) ] (solid) and Im [ χ s ( 3 ) ] (dashed) versus Δs without tunneling. The parameters are the same with those in Fig. 3.

Fig. 5
Fig. 5

(color online) (a) ϕ p n (dashed), ϕ s n (dasheddotdot), and ϕ t n with (solid) and without (longdashed) the control field versus the Rabi frequency Ωp = Ωs = Ω; (b) ϕ p n (dashed), ϕ s n (dasheddotdot), and ϕ t n (solid) versus the Rabi frequency Ωp = Ωs = Ω with m = q = k = 0. The length of QWs is taken as 1.0 mm, and the other parameters are same as those in Fig. 3.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

σ ˙ 21 = i d 21 σ 21 i Ω p ( σ 23 + m σ 24 ) + i Ω s ( σ 31 + q σ 41 ) ,
σ ˙ 31 = i d 31 σ 31 + i Ω p ( σ 11 σ 33 ) i m Ω p σ 34 + i Ω s σ 21 + i Ω c σ 51 ,
σ ˙ 41 = i d 41 σ 41 + i m Ω p ( σ 11 σ 44 ) i Ω p σ 43 + i q Ω s σ 21 + i k Ω c σ 51 ,
σ ˙ 51 = i d 51 σ 51 i Ω p ( σ 53 + m σ 54 ) + i Ω c ( σ 31 + k σ 41 ) ,
σ ˙ 32 = i d 32 σ 32 + i Ω s ( σ 22 σ 33 ) + i Ω p σ 12 i q Ω s σ 34 + i Ω c σ 52 ,
σ ˙ 42 = i d 42 σ 42 + i q Ω s ( σ 22 σ 44 ) + i m Ω p σ 12 i Ω s σ 43 + i k Ω c σ 52 ,
σ ˙ 52 = i d 52 σ 52 i Ω s ( σ 53 + q σ 54 ) + i Ω c ( σ 32 + k σ 42 ) ,
v p g = 1 / Re [ K p ( 1 ) ] , v s g = 1 / Re [ K s ( 1 ) ] ,
K p ( 1 ) = 1 c + κ p { [ d 31 d 41 + d 31 d 51 + d 41 d 51 ( 1 + k 2 ) Ω c 2 ]   [ d 51 ( d 41 + m 2 d 31 ) ( k m 2 ) Ω c 2 ] [ d 31 d 41 d 51 ( d 41 + k 2 d 31 ) Ω c 2 ] 2 d 41 + m 2 d 31 + ( 1 + m 2 ) d 51 d 31 d 41 d 51 ( d 41 + k 2 d 31 ) Ω c 2 } ,
K s ( 1 ) = 1 c + κ s { [ d 32 d 42 + d 32 d 52 + d 42 d 52 ( 1 + k 2 ) Ω c 2 ]   [ d 52 ( d 42 + m 2 d 32 ) ( k q ) 2 Ω c 2 ] [ d 32 d 42 d 52 ( d 42 + k 2 d 32 ) Ω c 2 ] 2 d 42 + m 2 d 32 + ( 1 + m 2 ) d 52 d 32 d 42 d 52 ( d 42 + k 2 d 32 ) Ω c 2 } ,
χ p = N | μ 13 | 2 h ¯ ε 0 σ 31 + m σ 41 Ω p χ p ( 1 ) + χ p ( 3 , SPM ) | E p | 2 + χ p ( 3 , XPM ) | E s | 2 ,
χ s = N | μ 23 | 2 h ¯ ε 0 σ 32 + q σ 42 Ω s χ s ( 1 ) + χ s ( 3 , SPM ) | E s | 2 + χ s ( 3 , XPM ) | E p | 2 ,
χ p ( 1 ) = N | μ 31 | 2 h ¯ ε 0 χ p ( 1 ) , χ s ( 1 ) = N | μ 32 | 2 h ¯ ε 0 χ s ( 1 ) ,
χ p ( 1 ) = σ 11 ( 0 ) d 51 ( d 41 + m 2 d 31 ) ( k m ) 2 Ω c 2 d 31 d 41 d 51 ( d 41 + k 2 d 31 ) Ω c 2 ,
χ s ( 1 ) = σ 22 ( 0 ) d 52 ( d 42 + q 2 d 32 ) ( k q ) 2 Ω c 2 d 32 d 42 d 52 ( d 42 + k 2 d 32 ) Ω c 2 .
χ p ( 3 , SPM ) = χ s ( 3 , SPM ) = 0 ,
χ p ( 3 , XPM ) = N | μ 13 | 2 | μ 23 | 2 4 h ¯ 3 ε 0 χ p ( 3 , XPM ) ,
χ s ( 3 , XPM ) = N | μ 13 | 2 | μ 23 | 2 4 h ¯ 3 ε 0 χ s ( 3 , XPM ) ,
χ p ( 3 , XPM ) = T p 1 𝒵 [ T p 2 + ( T p 3 T p 4 ) Ω c 2 + T p 5 Ω c 4 ] ,
χ s ( 3 , XPM ) = T s 1 𝒵 * [ T s 1 + ( T s 3 T s 4 ) Ω c 2 + T s 5 Ω c 4 ] ,
T p 1 = d 51 ( d 41 + m q d 31 ) + ( m k ) ( k q ) Ω c 2 , T p 2 = d 51 d 25 [ σ 11 d 23 d 24 ( d 41 + m q d 31 ) σ 22 d 31 d 41 ( d 24 + m q d 23 ) ] , T p 3 = d 25 [ σ 22 ( d 41 + k 2 d 31 ) ( d 24 + m q d 23 ) + ( m k ) ( k q ) σ 11 d 23 d 24 ] , T p 4 = d 51 [ σ 11 ( d 24 + k 2 d 23 ) ( d 41 + m q d 31 ) + ( m k ) ( k q ) σ 22 d 31 d 41 ] , T p 5 = ( k m ) ( k q ) [ σ 11 ( d 24 + k 2 d 23 ) σ 22 ( d 41 + k 2 d 31 ) ] , T s 1 = d 51 ( d 42 + m q d 32 ) ( m k ) ( k q ) Ω c 2 , T s 2 = d 52 d 15 [ σ 11 d 32 d 42 ( d 14 + m q d 13 ) σ 22 d 13 d 14 ( d 43 + m q d 32 ) ] , T s 3 = d 15 [ σ 11 ( d 42 + k 2 d 32 ) ( d 14 + m q d 13 ) + ( m k ) ( k q ) σ 22 d 13 d 14 ] , T s 4 = d 52 [ σ 22 ( d 14 + k 2 d 13 ) ( d 42 + m q d 32 ) ( m k ) ( k q ) σ 11 d 32 d 42 ] , T s 5 = ( k m ) ( k q ) [ σ 11 ( d 42 + k 2 d 32 ) σ 22 ( d 14 + k 2 d 13 ) ] , 𝒵 = d 21 [ d 23 d 24 d 25 ( d 24 + k 2 d 23 ) Ω c 2 ] [ d 31 d 41 d 51 ( d 41 + k 2 d 31 ) Ω c 2 ] 2 .
ϕ p n = 2 ω p l c h ¯ 2 | Ω s 0 | 2 | μ 23 | 2 erf ( ζ p ) ζ p Re [ χ p ( 3 , XPM ) ] ,
ϕ s n = 2 ω s l c h ¯ 2 | Ω p 0 | 2 | μ 13 | 2 erf ( ζ s ) ζ s Re [ χ s ( 3 , XPM ) ] ,

Metrics