Abstract

A new ethanol vapor detection probe based on an optical fiber long period grating overlaid with a zinc oxide (ZnO) nanorods layer is presented. The ZnO nanorod layer was developed onto the cladding of the fiber using aqueous chemical growth, seeded by a thin layer of metallic Zn. The growth of the ZnO nanorods overlayer onto the long period grating cladding is monitored in real time for investigating its effect on the spectral properties of the device and its subsequent role in the sensing mechanism. Results are presented, on the correlation between the growth time of the ZnO layer and the ethanol vapor detection performance. Reversible spectral changes of the notch extinction ratio of more than 4dB were recorded for ~50Torr of ethanol vapor concentration. In addition, photoluminescence emission studies of the ZnO overlayer performed simultaneously with the optical fiber spectral measurements, revealed significant ethanol induced changes in the intensity of the bandgap peak.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Bansal and M. El-Sherif, “Intrinsic optical-fiber sensor for nerve agent sensing,” IEEE Sens. J. 5(4), 648–655 (2005).
    [CrossRef]
  2. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 78(12), 3859–3874 (2006).
    [CrossRef] [PubMed]
  3. S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
    [CrossRef] [PubMed]
  4. J. Zhang, X. Tang, J. Dong, T. Wei, and H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical,” Opt. Express 16(11), 8317–8323 (2008).
    [CrossRef] [PubMed]
  5. A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
    [CrossRef]
  6. Z. Gu, Y. Xu, and K. Gao, “Optical fiber long-period grating with solgel coating for gas sensor,” Opt. Lett. 31(16), 2405–2407 (2006).
    [CrossRef] [PubMed]
  7. M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45(19), 4567–4571 (2006).
    [CrossRef] [PubMed]
  8. A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, “Detection of CO and O2 using Tin Oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
    [CrossRef]
  9. K. S. Yoo, S. H. Park, and J. H. Kang, “Nano-grained thin-film indium tin oxide gas sensors for H2 detection,” Sens. Actuators B Chem. 108(1-2), 159–164 (2005).
    [CrossRef]
  10. G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, “Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique,” Sens. Actuators B Chem. 124(1), 187–191 (2007).
    [CrossRef]
  11. W.-Y. Wu, J.-M. Ting, and P.-J. Huang, “Electrospun ZnO nanowires as gas sensors for ethanol detection,” Nanoscale Res. Lett. 4(6), 513–517 (2009).
    [CrossRef] [PubMed]
  12. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
    [CrossRef]
  13. N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film,” Opt. Express 18(11), 11859–11866 (2010).
    [CrossRef] [PubMed]
  14. D. Anglos, A. Stassinopoulos, R. N. Das, G. Zacharakis, M. Psyllaki, R. Jakubiak, R. A. Vaia, E. P. Giannelis, and S. H. Anastasiadis, “Random laser action in organic/inorganic nanocomposites,” J. Opt. Soc. Am. B 21(1), 208–213 (2004).
    [CrossRef]
  15. N. N. Lathiotakis, A. N. Andriotis, and M. Menon, “Codoping: a possible pathway for inducing ferromagnetism in ZnO,” Phys. Rev. B 78(19), 193311 (2008).
    [CrossRef]
  16. C. de Julián Fernández, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuators B Chem. 130(1), 531–537 (2008).
    [CrossRef]
  17. W. Zhang, “Automotive fuels from biomass via gasification,” Fuel Process. Technol. 91(8), 866–876 (2010).
    [CrossRef]
  18. C. Liewhiran, A. Camenzind, A. Teleki, S. E. Pratsinis, and S. Phanichphant, “High performance ethanol sensor for control drunken driving based on fame-made ZnO nanoparticles,” in Nano/Micro Engineered and Molecular Systems,2007. NEMS '07. 2nd IEEE International Conference on, 2007, 672–677.
  19. D. W. Lachenmeier, R. Godelmann, M. Steiner, B. Ansay, J. Weigel, and G. Krieg, “Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor,” Chem. Cent. J. 4(1), 5 (2010).
    [CrossRef] [PubMed]
  20. A. Klini, A. Mourka, V. Dinca, C. Fotakis, and F. Claeyssens, “ZnO nanorod micropatterning via laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 87(1), 17–22 (2007).
    [CrossRef]
  21. L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express 1(2), 128–137 (2011).
    [CrossRef]
  22. M. Konstantaki and S. Pissadakis, “Optically tunable long period fiber gratings utilizing a photochromic out-cladding overlayer,” Opt. Fiber Technol. 17(3), 168–170 (2011).
    [CrossRef]
  23. E. Comini, C. Baratto, G. Faglia, M. Ferroni, and G. Sberveglieri, “Single crystal ZnO nanowires as optical and conductometric chemical sensor,” J. Phys. D Appl. Phys. 40(23), 7255–7259 (2007).
    [CrossRef]
  24. C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, “Luminescence response of ZnO nanowires to gas adsorption,” Sens. Actuators B Chem. 140(2), 461–466 (2009).
    [CrossRef]
  25. Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
    [CrossRef] [PubMed]
  26. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
    [CrossRef] [PubMed]
  27. M. Nagao and T. Morimoto, “Adsorption of alcohols on zinc oxide surfaces,” J. Phys. Chem. 84(16), 2054–2058 (1980).
    [CrossRef]
  28. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [CrossRef]
  29. A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
    [CrossRef] [PubMed]
  30. A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
    [CrossRef]
  31. A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
    [CrossRef] [PubMed]
  32. W. Mokwa, D. Kohl, and G. Heiland, “Decomposition of ethanol and acetaldehyde on clean ZnO prism and oxygen faces,” Surf. Sci. 117(1-3), 659–667 (1982).
    [CrossRef]
  33. G.-H. Kuo, H. P. Wang, H. H. Hsu, J. Wang, Y. M. Chiu, C.-J. G. Jou, T. F. Hsu, and F.-L. Chen, “Sensing of ethanol with nanosize Fe-ZnO thin films,” J. Nanomater. 2009, 316035 (2009).
    [CrossRef]
  34. X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss becomes a gain,” Opt. Lett. 28(9), 686–688 (2003).
    [CrossRef] [PubMed]
  35. X. Chu, T. Chen, W. Zhang, B. Zheng, and H. Shui, “Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method,” Sens. Actuators B Chem. 142(1), 49–54 (2009).
    [CrossRef]
  36. D. Valerini, A. Cretì, A. P. Caricato, M. Lomascolo, R. Rella, and M. Martino, “Optical gas sensing through nanostructured ZnO films with different morphologies,” Sens. Actuators B Chem. 145(1), 167–173 (2010).
    [CrossRef]
  37. G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
    [CrossRef]

2011 (2)

L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express 1(2), 128–137 (2011).
[CrossRef]

M. Konstantaki and S. Pissadakis, “Optically tunable long period fiber gratings utilizing a photochromic out-cladding overlayer,” Opt. Fiber Technol. 17(3), 168–170 (2011).
[CrossRef]

2010 (5)

D. Valerini, A. Cretì, A. P. Caricato, M. Lomascolo, R. Rella, and M. Martino, “Optical gas sensing through nanostructured ZnO films with different morphologies,” Sens. Actuators B Chem. 145(1), 167–173 (2010).
[CrossRef]

S. Korposh, S. W. James, S.-W. Lee, S. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
[CrossRef] [PubMed]

N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film,” Opt. Express 18(11), 11859–11866 (2010).
[CrossRef] [PubMed]

W. Zhang, “Automotive fuels from biomass via gasification,” Fuel Process. Technol. 91(8), 866–876 (2010).
[CrossRef]

D. W. Lachenmeier, R. Godelmann, M. Steiner, B. Ansay, J. Weigel, and G. Krieg, “Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor,” Chem. Cent. J. 4(1), 5 (2010).
[CrossRef] [PubMed]

2009 (5)

W.-Y. Wu, J.-M. Ting, and P.-J. Huang, “Electrospun ZnO nanowires as gas sensors for ethanol detection,” Nanoscale Res. Lett. 4(6), 513–517 (2009).
[CrossRef] [PubMed]

X. Chu, T. Chen, W. Zhang, B. Zheng, and H. Shui, “Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method,” Sens. Actuators B Chem. 142(1), 49–54 (2009).
[CrossRef]

G.-H. Kuo, H. P. Wang, H. H. Hsu, J. Wang, Y. M. Chiu, C.-J. G. Jou, T. F. Hsu, and F.-L. Chen, “Sensing of ethanol with nanosize Fe-ZnO thin films,” J. Nanomater. 2009, 316035 (2009).
[CrossRef]

C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, “Luminescence response of ZnO nanowires to gas adsorption,” Sens. Actuators B Chem. 140(2), 461–466 (2009).
[CrossRef]

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

2008 (3)

N. N. Lathiotakis, A. N. Andriotis, and M. Menon, “Codoping: a possible pathway for inducing ferromagnetism in ZnO,” Phys. Rev. B 78(19), 193311 (2008).
[CrossRef]

C. de Julián Fernández, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuators B Chem. 130(1), 531–537 (2008).
[CrossRef]

J. Zhang, X. Tang, J. Dong, T. Wei, and H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical,” Opt. Express 16(11), 8317–8323 (2008).
[CrossRef] [PubMed]

2007 (5)

G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, “Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique,” Sens. Actuators B Chem. 124(1), 187–191 (2007).
[CrossRef]

A. Klini, A. Mourka, V. Dinca, C. Fotakis, and F. Claeyssens, “ZnO nanorod micropatterning via laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 87(1), 17–22 (2007).
[CrossRef]

E. Comini, C. Baratto, G. Faglia, M. Ferroni, and G. Sberveglieri, “Single crystal ZnO nanowires as optical and conductometric chemical sensor,” J. Phys. D Appl. Phys. 40(23), 7255–7259 (2007).
[CrossRef]

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[CrossRef]

A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[CrossRef] [PubMed]

2006 (5)

2005 (3)

L. Bansal and M. El-Sherif, “Intrinsic optical-fiber sensor for nerve agent sensing,” IEEE Sens. J. 5(4), 648–655 (2005).
[CrossRef]

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

K. S. Yoo, S. H. Park, and J. H. Kang, “Nano-grained thin-film indium tin oxide gas sensors for H2 detection,” Sens. Actuators B Chem. 108(1-2), 159–164 (2005).
[CrossRef]

2004 (2)

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[CrossRef]

D. Anglos, A. Stassinopoulos, R. N. Das, G. Zacharakis, M. Psyllaki, R. Jakubiak, R. A. Vaia, E. P. Giannelis, and S. H. Anastasiadis, “Random laser action in organic/inorganic nanocomposites,” J. Opt. Soc. Am. B 21(1), 208–213 (2004).
[CrossRef]

2003 (3)

A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, “Detection of CO and O2 using Tin Oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
[CrossRef]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss becomes a gain,” Opt. Lett. 28(9), 686–688 (2003).
[CrossRef] [PubMed]

2001 (1)

G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
[CrossRef]

1982 (1)

W. Mokwa, D. Kohl, and G. Heiland, “Decomposition of ethanol and acetaldehyde on clean ZnO prism and oxygen faces,” Surf. Sci. 117(1-3), 659–667 (1982).
[CrossRef]

1980 (1)

M. Nagao and T. Morimoto, “Adsorption of alcohols on zinc oxide surfaces,” J. Phys. Chem. 84(16), 2054–2058 (1980).
[CrossRef]

Albert, J.

Anastasiadis, S. H.

Andreev, A. T.

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[CrossRef]

A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[CrossRef] [PubMed]

Andriotis, A. N.

N. N. Lathiotakis, A. N. Andriotis, and M. Menon, “Codoping: a possible pathway for inducing ferromagnetism in ZnO,” Phys. Rev. B 78(19), 193311 (2008).
[CrossRef]

Anglos, D.

Ansay, B.

D. W. Lachenmeier, R. Godelmann, M. Steiner, B. Ansay, J. Weigel, and G. Krieg, “Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor,” Chem. Cent. J. 4(1), 5 (2010).
[CrossRef] [PubMed]

Atanasov, P. A.

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[CrossRef]

A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[CrossRef] [PubMed]

Baets, R.

Bansal, L.

L. Bansal and M. El-Sherif, “Intrinsic optical-fiber sensor for nerve agent sensing,” IEEE Sens. J. 5(4), 648–655 (2005).
[CrossRef]

Baratto, C.

C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, “Luminescence response of ZnO nanowires to gas adsorption,” Sens. Actuators B Chem. 140(2), 461–466 (2009).
[CrossRef]

E. Comini, C. Baratto, G. Faglia, M. Ferroni, and G. Sberveglieri, “Single crystal ZnO nanowires as optical and conductometric chemical sensor,” J. Phys. D Appl. Phys. 40(23), 7255–7259 (2007).
[CrossRef]

Barry, S. T.

Batty, W. J.

Bersani, M.

C. de Julián Fernández, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuators B Chem. 130(1), 531–537 (2008).
[CrossRef]

Campopiano, S.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[CrossRef] [PubMed]

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Caricato, A. P.

D. Valerini, A. Cretì, A. P. Caricato, M. Lomascolo, R. Rella, and M. Martino, “Optical gas sensing through nanostructured ZnO films with different morphologies,” Sens. Actuators B Chem. 145(1), 167–173 (2010).
[CrossRef]

Chen, F.-L.

G.-H. Kuo, H. P. Wang, H. H. Hsu, J. Wang, Y. M. Chiu, C.-J. G. Jou, T. F. Hsu, and F.-L. Chen, “Sensing of ethanol with nanosize Fe-ZnO thin films,” J. Nanomater. 2009, 316035 (2009).
[CrossRef]

Chen, T.

X. Chu, T. Chen, W. Zhang, B. Zheng, and H. Shui, “Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method,” Sens. Actuators B Chem. 142(1), 49–54 (2009).
[CrossRef]

Chen, X.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Chen, Y. J.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[CrossRef]

Cheng, G.

A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, “Detection of CO and O2 using Tin Oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
[CrossRef]

Cheung, S. C.

Chiu, Y. M.

G.-H. Kuo, H. P. Wang, H. H. Hsu, J. Wang, Y. M. Chiu, C.-J. G. Jou, T. F. Hsu, and F.-L. Chen, “Sensing of ethanol with nanosize Fe-ZnO thin films,” J. Nanomater. 2009, 316035 (2009).
[CrossRef]

Chu, X.

X. Chu, T. Chen, W. Zhang, B. Zheng, and H. Shui, “Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method,” Sens. Actuators B Chem. 142(1), 49–54 (2009).
[CrossRef]

Claeyssens, F.

A. Klini, A. Mourka, V. Dinca, C. Fotakis, and F. Claeyssens, “ZnO nanorod micropatterning via laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 87(1), 17–22 (2007).
[CrossRef]

Comini, E.

C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, “Luminescence response of ZnO nanowires to gas adsorption,” Sens. Actuators B Chem. 140(2), 461–466 (2009).
[CrossRef]

E. Comini, C. Baratto, G. Faglia, M. Ferroni, and G. Sberveglieri, “Single crystal ZnO nanowires as optical and conductometric chemical sensor,” J. Phys. D Appl. Phys. 40(23), 7255–7259 (2007).
[CrossRef]

Contessa, L.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[CrossRef] [PubMed]

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Coyle, J. P.

Cretì, A.

D. Valerini, A. Cretì, A. P. Caricato, M. Lomascolo, R. Rella, and M. Martino, “Optical gas sensing through nanostructured ZnO films with different morphologies,” Sens. Actuators B Chem. 145(1), 167–173 (2010).
[CrossRef]

Cusano, A.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[CrossRef] [PubMed]

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Cutolo, A.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[CrossRef] [PubMed]

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Das, R. N.

Daxhelet, X.

de Julián Fernández, C.

C. de Julián Fernández, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuators B Chem. 130(1), 531–537 (2008).
[CrossRef]

Dikovska, A. O.

A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[CrossRef] [PubMed]

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[CrossRef]

Dinca, V.

A. Klini, A. Mourka, V. Dinca, C. Fotakis, and F. Claeyssens, “ZnO nanorod micropatterning via laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 87(1), 17–22 (2007).
[CrossRef]

Djurisic, A. B.

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

Dong, J.

El-Sherif, M.

L. Bansal and M. El-Sherif, “Intrinsic optical-fiber sensor for nerve agent sensing,” IEEE Sens. J. 5(4), 648–655 (2005).
[CrossRef]

Faglia, G.

C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, “Luminescence response of ZnO nanowires to gas adsorption,” Sens. Actuators B Chem. 140(2), 461–466 (2009).
[CrossRef]

E. Comini, C. Baratto, G. Faglia, M. Ferroni, and G. Sberveglieri, “Single crystal ZnO nanowires as optical and conductometric chemical sensor,” J. Phys. D Appl. Phys. 40(23), 7255–7259 (2007).
[CrossRef]

Ferroni, M.

E. Comini, C. Baratto, G. Faglia, M. Ferroni, and G. Sberveglieri, “Single crystal ZnO nanowires as optical and conductometric chemical sensor,” J. Phys. D Appl. Phys. 40(23), 7255–7259 (2007).
[CrossRef]

Fotakis, C.

A. Klini, A. Mourka, V. Dinca, C. Fotakis, and F. Claeyssens, “ZnO nanorod micropatterning via laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 87(1), 17–22 (2007).
[CrossRef]

Gao, K.

Giannelis, E. P.

Giordano, M.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[CrossRef] [PubMed]

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Godelmann, R.

D. W. Lachenmeier, R. Godelmann, M. Steiner, B. Ansay, J. Weigel, and G. Krieg, “Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor,” Chem. Cent. J. 4(1), 5 (2010).
[CrossRef] [PubMed]

Gu, Z.

Guerra, G.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

He, X. L.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[CrossRef]

Heiland, G.

W. Mokwa, D. Kohl, and G. Heiland, “Decomposition of ethanol and acetaldehyde on clean ZnO prism and oxygen faces,” Surf. Sci. 117(1-3), 659–667 (1982).
[CrossRef]

Hens, Z.

Hsu, H. H.

G.-H. Kuo, H. P. Wang, H. H. Hsu, J. Wang, Y. M. Chiu, C.-J. G. Jou, T. F. Hsu, and F.-L. Chen, “Sensing of ethanol with nanosize Fe-ZnO thin films,” J. Nanomater. 2009, 316035 (2009).
[CrossRef]

Hsu, T. F.

G.-H. Kuo, H. P. Wang, H. H. Hsu, J. Wang, Y. M. Chiu, C.-J. G. Jou, T. F. Hsu, and F.-L. Chen, “Sensing of ethanol with nanosize Fe-ZnO thin films,” J. Nanomater. 2009, 316035 (2009).
[CrossRef]

Huang, P.-J.

W.-Y. Wu, J.-M. Ting, and P.-J. Huang, “Electrospun ZnO nanowires as gas sensors for ethanol detection,” Nanoscale Res. Lett. 4(6), 513–517 (2009).
[CrossRef] [PubMed]

Iadicicco, A.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[CrossRef] [PubMed]

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Jakubiak, R.

James, S. W.

Jou, C.-J. G.

G.-H. Kuo, H. P. Wang, H. H. Hsu, J. Wang, Y. M. Chiu, C.-J. G. Jou, T. F. Hsu, and F.-L. Chen, “Sensing of ethanol with nanosize Fe-ZnO thin films,” J. Nanomater. 2009, 316035 (2009).
[CrossRef]

Kang, J. H.

K. S. Yoo, S. H. Park, and J. H. Kang, “Nano-grained thin-film indium tin oxide gas sensors for H2 detection,” Sens. Actuators B Chem. 108(1-2), 159–164 (2005).
[CrossRef]

Karakoleva, E. I.

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[CrossRef]

A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[CrossRef] [PubMed]

Katsarakis, N.

G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, “Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique,” Sens. Actuators B Chem. 124(1), 187–191 (2007).
[CrossRef]

Kenanakis, G.

G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, “Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique,” Sens. Actuators B Chem. 124(1), 187–191 (2007).
[CrossRef]

Kiriakidis, G.

G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, “Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique,” Sens. Actuators B Chem. 124(1), 187–191 (2007).
[CrossRef]

Klini, A.

A. Klini, A. Mourka, V. Dinca, C. Fotakis, and F. Claeyssens, “ZnO nanorod micropatterning via laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 87(1), 17–22 (2007).
[CrossRef]

Kohl, D.

W. Mokwa, D. Kohl, and G. Heiland, “Decomposition of ethanol and acetaldehyde on clean ZnO prism and oxygen faces,” Surf. Sci. 117(1-3), 659–667 (1982).
[CrossRef]

Kolmakov, A.

A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, “Detection of CO and O2 using Tin Oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
[CrossRef]

Konstantaki, M.

M. Konstantaki and S. Pissadakis, “Optically tunable long period fiber gratings utilizing a photochromic out-cladding overlayer,” Opt. Fiber Technol. 17(3), 168–170 (2011).
[CrossRef]

M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45(19), 4567–4571 (2006).
[CrossRef] [PubMed]

Korposh, S.

Koudoumas, E.

G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, “Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique,” Sens. Actuators B Chem. 124(1), 187–191 (2007).
[CrossRef]

Krieg, G.

D. W. Lachenmeier, R. Godelmann, M. Steiner, B. Ansay, J. Weigel, and G. Krieg, “Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor,” Chem. Cent. J. 4(1), 5 (2010).
[CrossRef] [PubMed]

Kulishov, M.

Kuo, G.-H.

G.-H. Kuo, H. P. Wang, H. H. Hsu, J. Wang, Y. M. Chiu, C.-J. G. Jou, T. F. Hsu, and F.-L. Chen, “Sensing of ethanol with nanosize Fe-ZnO thin films,” J. Nanomater. 2009, 316035 (2009).
[CrossRef]

Lachenmeier, D. W.

D. W. Lachenmeier, R. Godelmann, M. Steiner, B. Ansay, J. Weigel, and G. Krieg, “Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor,” Chem. Cent. J. 4(1), 5 (2010).
[CrossRef] [PubMed]

Lathiotakis, N. N.

N. N. Lathiotakis, A. N. Andriotis, and M. Menon, “Codoping: a possible pathway for inducing ferromagnetism in ZnO,” Phys. Rev. B 78(19), 193311 (2008).
[CrossRef]

Lee, S.-W.

Lettieri, S.

C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, “Luminescence response of ZnO nanowires to gas adsorption,” Sens. Actuators B Chem. 140(2), 461–466 (2009).
[CrossRef]

Leung, Y. H.

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

Li, J. P.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[CrossRef]

Li, Q. H.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[CrossRef]

Lin, C. L.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[CrossRef]

Lomascolo, M.

D. Valerini, A. Cretì, A. P. Caricato, M. Lomascolo, R. Rella, and M. Martino, “Optical gas sensing through nanostructured ZnO films with different morphologies,” Sens. Actuators B Chem. 145(1), 167–173 (2010).
[CrossRef]

Lommens, P.

Madamopoulos, N.

Maddalena, P.

C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, “Luminescence response of ZnO nanowires to gas adsorption,” Sens. Actuators B Chem. 140(2), 461–466 (2009).
[CrossRef]

Manera, M. G.

C. de Julián Fernández, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuators B Chem. 130(1), 531–537 (2008).
[CrossRef]

Martino, M.

D. Valerini, A. Cretì, A. P. Caricato, M. Lomascolo, R. Rella, and M. Martino, “Optical gas sensing through nanostructured ZnO films with different morphologies,” Sens. Actuators B Chem. 145(1), 167–173 (2010).
[CrossRef]

Matsunaga, N.

G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
[CrossRef]

Mattei, G.

C. de Julián Fernández, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuators B Chem. 130(1), 531–537 (2008).
[CrossRef]

Mazzoldi, P.

C. de Julián Fernández, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuators B Chem. 130(1), 531–537 (2008).
[CrossRef]

Menon, M.

N. N. Lathiotakis, A. N. Andriotis, and M. Menon, “Codoping: a possible pathway for inducing ferromagnetism in ZnO,” Phys. Rev. B 78(19), 193311 (2008).
[CrossRef]

Mokwa, W.

W. Mokwa, D. Kohl, and G. Heiland, “Decomposition of ethanol and acetaldehyde on clean ZnO prism and oxygen faces,” Surf. Sci. 117(1-3), 659–667 (1982).
[CrossRef]

Morimoto, T.

M. Nagao and T. Morimoto, “Adsorption of alcohols on zinc oxide surfaces,” J. Phys. Chem. 84(16), 2054–2058 (1980).
[CrossRef]

Moskovits, M.

A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, “Detection of CO and O2 using Tin Oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
[CrossRef]

Mourka, A.

A. Klini, A. Mourka, V. Dinca, C. Fotakis, and F. Claeyssens, “ZnO nanorod micropatterning via laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 87(1), 17–22 (2007).
[CrossRef]

Nagao, M.

M. Nagao and T. Morimoto, “Adsorption of alcohols on zinc oxide surfaces,” J. Phys. Chem. 84(16), 2054–2058 (1980).
[CrossRef]

Park, S. H.

K. S. Yoo, S. H. Park, and J. H. Kang, “Nano-grained thin-film indium tin oxide gas sensors for H2 detection,” Sens. Actuators B Chem. 108(1-2), 159–164 (2005).
[CrossRef]

Pellegrini, G.

C. de Julián Fernández, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuators B Chem. 130(1), 531–537 (2008).
[CrossRef]

Pilla, P.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[CrossRef] [PubMed]

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Pispas, S.

Pissadakis, S.

M. Konstantaki and S. Pissadakis, “Optically tunable long period fiber gratings utilizing a photochromic out-cladding overlayer,” Opt. Fiber Technol. 17(3), 168–170 (2011).
[CrossRef]

M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45(19), 4567–4571 (2006).
[CrossRef] [PubMed]

Psyllaki, M.

Rella, R.

D. Valerini, A. Cretì, A. P. Caricato, M. Lomascolo, R. Rella, and M. Martino, “Optical gas sensing through nanostructured ZnO films with different morphologies,” Sens. Actuators B Chem. 145(1), 167–173 (2010).
[CrossRef]

C. de Julián Fernández, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuators B Chem. 130(1), 531–537 (2008).
[CrossRef]

Sakai, G.

G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
[CrossRef]

Santamaria, L.

C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, “Luminescence response of ZnO nanowires to gas adsorption,” Sens. Actuators B Chem. 140(2), 461–466 (2009).
[CrossRef]

Sberveglieri, G.

C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, “Luminescence response of ZnO nanowires to gas adsorption,” Sens. Actuators B Chem. 140(2), 461–466 (2009).
[CrossRef]

E. Comini, C. Baratto, G. Faglia, M. Ferroni, and G. Sberveglieri, “Single crystal ZnO nanowires as optical and conductometric chemical sensor,” J. Phys. D Appl. Phys. 40(23), 7255–7259 (2007).
[CrossRef]

Shao, L.-Y.

Shimanoe, K.

G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
[CrossRef]

Shui, H.

X. Chu, T. Chen, W. Zhang, B. Zheng, and H. Shui, “Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method,” Sens. Actuators B Chem. 142(1), 49–54 (2009).
[CrossRef]

Stassinopoulos, A.

Steiner, M.

D. W. Lachenmeier, R. Godelmann, M. Steiner, B. Ansay, J. Weigel, and G. Krieg, “Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor,” Chem. Cent. J. 4(1), 5 (2010).
[CrossRef] [PubMed]

Stoyanchov, T. R.

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[CrossRef]

A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[CrossRef] [PubMed]

Tang, X.

Tatam, R. P.

Ting, J.-M.

W.-Y. Wu, J.-M. Ting, and P.-J. Huang, “Electrospun ZnO nanowires as gas sensors for ethanol detection,” Nanoscale Res. Lett. 4(6), 513–517 (2009).
[CrossRef] [PubMed]

Todros, S.

C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, “Luminescence response of ZnO nanowires to gas adsorption,” Sens. Actuators B Chem. 140(2), 461–466 (2009).
[CrossRef]

Topliss, S.

Vaia, R. A.

Vainos, N. A.

Valerini, D.

D. Valerini, A. Cretì, A. P. Caricato, M. Lomascolo, R. Rella, and M. Martino, “Optical gas sensing through nanostructured ZnO films with different morphologies,” Sens. Actuators B Chem. 145(1), 167–173 (2010).
[CrossRef]

Vasanelli, L.

C. de Julián Fernández, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuators B Chem. 130(1), 531–537 (2008).
[CrossRef]

Vernardou, D.

G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, “Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique,” Sens. Actuators B Chem. 124(1), 187–191 (2007).
[CrossRef]

Wan, Q.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[CrossRef]

Wang, H. P.

G.-H. Kuo, H. P. Wang, H. H. Hsu, J. Wang, Y. M. Chiu, C.-J. G. Jou, T. F. Hsu, and F.-L. Chen, “Sensing of ethanol with nanosize Fe-ZnO thin films,” J. Nanomater. 2009, 316035 (2009).
[CrossRef]

Wang, J.

G.-H. Kuo, H. P. Wang, H. H. Hsu, J. Wang, Y. M. Chiu, C.-J. G. Jou, T. F. Hsu, and F.-L. Chen, “Sensing of ethanol with nanosize Fe-ZnO thin films,” J. Nanomater. 2009, 316035 (2009).
[CrossRef]

Wang, T. H.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[CrossRef]

Wang, Y.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Wei, T.

Weigel, J.

D. W. Lachenmeier, R. Godelmann, M. Steiner, B. Ansay, J. Weigel, and G. Krieg, “Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor,” Chem. Cent. J. 4(1), 5 (2010).
[CrossRef] [PubMed]

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 78(12), 3859–3874 (2006).
[CrossRef] [PubMed]

Wu, W.-Y.

W.-Y. Wu, J.-M. Ting, and P.-J. Huang, “Electrospun ZnO nanowires as gas sensors for ethanol detection,” Nanoscale Res. Lett. 4(6), 513–517 (2009).
[CrossRef] [PubMed]

Xiao, H.

Xu, D.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Xu, Y.

Yamazoe, N.

G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
[CrossRef]

Yang, Z.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Yebo, N. A.

Yoo, K. S.

K. S. Yoo, S. H. Park, and J. H. Kang, “Nano-grained thin-film indium tin oxide gas sensors for H2 detection,” Sens. Actuators B Chem. 108(1-2), 159–164 (2005).
[CrossRef]

Zacharakis, G.

Zafirova, B. S.

A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
[CrossRef] [PubMed]

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[CrossRef]

Zhang, J.

Zhang, W.

W. Zhang, “Automotive fuels from biomass via gasification,” Fuel Process. Technol. 91(8), 866–876 (2010).
[CrossRef]

X. Chu, T. Chen, W. Zhang, B. Zheng, and H. Shui, “Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method,” Sens. Actuators B Chem. 142(1), 49–54 (2009).
[CrossRef]

Zhang, Y.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, “Detection of CO and O2 using Tin Oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
[CrossRef]

Zheng, B.

X. Chu, T. Chen, W. Zhang, B. Zheng, and H. Shui, “Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method,” Sens. Actuators B Chem. 142(1), 49–54 (2009).
[CrossRef]

Zhou, Z.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, “Detection of CO and O2 using Tin Oxide nanowire sensors,” Adv. Mater. (Deerfield Beach Fla.) 15(12), 997–1000 (2003).
[CrossRef]

Anal. Chem. (1)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 78(12), 3859–3874 (2006).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water,” Appl. Phys. Lett. 87(23), 234105 (2005).
[CrossRef]

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

A. Klini, A. Mourka, V. Dinca, C. Fotakis, and F. Claeyssens, “ZnO nanorod micropatterning via laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 87(1), 17–22 (2007).
[CrossRef]

Appl. Surf. Sci. (1)

A. O. Dikovska, P. A. Atanasov, A. T. Andreev, B. S. Zafirova, E. I. Karakoleva, and T. R. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Appl. Surf. Sci. 254(4), 1087–1090 (2007).
[CrossRef]

Chem. Cent. J. (1)

D. W. Lachenmeier, R. Godelmann, M. Steiner, B. Ansay, J. Weigel, and G. Krieg, “Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor,” Chem. Cent. J. 4(1), 5 (2010).
[CrossRef] [PubMed]

Fuel Process. Technol. (1)

W. Zhang, “Automotive fuels from biomass via gasification,” Fuel Process. Technol. 91(8), 866–876 (2010).
[CrossRef]

IEEE Sens. J. (1)

L. Bansal and M. El-Sherif, “Intrinsic optical-fiber sensor for nerve agent sensing,” IEEE Sens. J. 5(4), 648–655 (2005).
[CrossRef]

J. Nanomater. (1)

G.-H. Kuo, H. P. Wang, H. H. Hsu, J. Wang, Y. M. Chiu, C.-J. G. Jou, T. F. Hsu, and F.-L. Chen, “Sensing of ethanol with nanosize Fe-ZnO thin films,” J. Nanomater. 2009, 316035 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

M. Nagao and T. Morimoto, “Adsorption of alcohols on zinc oxide surfaces,” J. Phys. Chem. 84(16), 2054–2058 (1980).
[CrossRef]

J. Phys. D Appl. Phys. (1)

E. Comini, C. Baratto, G. Faglia, M. Ferroni, and G. Sberveglieri, “Single crystal ZnO nanowires as optical and conductometric chemical sensor,” J. Phys. D Appl. Phys. 40(23), 7255–7259 (2007).
[CrossRef]

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

Nanoscale Res. Lett. (1)

W.-Y. Wu, J.-M. Ting, and P.-J. Huang, “Electrospun ZnO nanowires as gas sensors for ethanol detection,” Nanoscale Res. Lett. 4(6), 513–517 (2009).
[CrossRef] [PubMed]

Nanotechnology (1)

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Fiber Technol. (1)

M. Konstantaki and S. Pissadakis, “Optically tunable long period fiber gratings utilizing a photochromic out-cladding overlayer,” Opt. Fiber Technol. 17(3), 168–170 (2011).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (1)

N. N. Lathiotakis, A. N. Andriotis, and M. Menon, “Codoping: a possible pathway for inducing ferromagnetism in ZnO,” Phys. Rev. B 78(19), 193311 (2008).
[CrossRef]

Sens. Actuators B Chem. (7)

C. de Julián Fernández, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuators B Chem. 130(1), 531–537 (2008).
[CrossRef]

K. S. Yoo, S. H. Park, and J. H. Kang, “Nano-grained thin-film indium tin oxide gas sensors for H2 detection,” Sens. Actuators B Chem. 108(1-2), 159–164 (2005).
[CrossRef]

G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, “Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique,” Sens. Actuators B Chem. 124(1), 187–191 (2007).
[CrossRef]

C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, “Luminescence response of ZnO nanowires to gas adsorption,” Sens. Actuators B Chem. 140(2), 461–466 (2009).
[CrossRef]

X. Chu, T. Chen, W. Zhang, B. Zheng, and H. Shui, “Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method,” Sens. Actuators B Chem. 142(1), 49–54 (2009).
[CrossRef]

D. Valerini, A. Cretì, A. P. Caricato, M. Lomascolo, R. Rella, and M. Martino, “Optical gas sensing through nanostructured ZnO films with different morphologies,” Sens. Actuators B Chem. 145(1), 167–173 (2010).
[CrossRef]

G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
[CrossRef]

Small (1)

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

Surf. Sci. (1)

W. Mokwa, D. Kohl, and G. Heiland, “Decomposition of ethanol and acetaldehyde on clean ZnO prism and oxygen faces,” Surf. Sci. 117(1-3), 659–667 (1982).
[CrossRef]

Other (1)

C. Liewhiran, A. Camenzind, A. Teleki, S. E. Pratsinis, and S. Phanichphant, “High performance ethanol sensor for control drunken driving based on fame-made ZnO nanoparticles,” in Nano/Micro Engineered and Molecular Systems,2007. NEMS '07. 2nd IEEE International Conference on, 2007, 672–677.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Wavelength shift of the LPG notch recorded during the chemical growth of ZnO. The x axis represent the time in the solution. (b) LPG notch strength change versus time in the solution.

Fig. 2
Fig. 2

Contour plot of the LPG transmission strength spectra versus growth time in the ZnO nanorods growth solution. Color bar represents grating intensity strength in dB.

Fig. 3
Fig. 3

SEM images of ZnO nanorod layers grown onto the LPG cladding under different views and under different chemical growth durations. (a) General view of ZnO narorod overlaid grating after 3-hour immersion in the ACG solution. The fibre has been intentionally scribed for illustrating the ZnO overlayer thickness. (b) Cross-section of a ZnO nanorods overlaid LPG; growth conditions as in (a). (c) Close view of ZnO overlayer after 27 min and (d) 58 min of chemical growth.

Fig. 4
Fig. 4

(a) Changes in the LPG notch strength ΔS and (b) wavelength upon exposure to 50Torr ethanol vapor versus exposure time. The solid line in graph (a) corresponds to the relative ethanol concentration as that was measured by the commercial PASCO probe. (c) Spectral effect of the ethanol vapor on the LPG attenuation band after 95min of exposure and corresponding recovery behavior to air.

Fig. 5
Fig. 5

Probe response measured for repeated cycles of ethanol (50 Torr)-air atmosphere.

Fig. 6
Fig. 6

Change in the LPG notch wavelength due to outcladding liquids of different refractive index (RI) values. Blue cell points are corresponding oil outcladding refractive index measurement shifts measured for gratings developed for different times in the chemical solution.

Fig. 7
Fig. 7

Room temperature photoluminescence spectrum of ZnO nanorods in air (black line) and following 5min exposure in a 50 Torr ethanol atmosphere (red line). The excitation energy is 1 mJ/pulse.

Fig. 8
Fig. 8

Response and recovery of the ZnO nanorods of photoluminescence signal changes ΔPL versus time for successive exposures to 50Torr ethanol atmosphere, for a sample fabricated employing 80min immersion in the chemical solution.

Tables (2)

Tables Icon

Table 1 LPG notch strength change in 50 Torr of ethanol atmosphere for different ZnO growth times

Tables Icon

Table 2 Notch wavelength shift variations of ZnO nanorod overlaid LPGs in different phases of the growth process.

Metrics