Abstract

In this paper we experimentally investigate a gigabit indoor optical wireless communication system with single channel imaging receiver. It is shown that the use of single channel imaging receiver rejects most of the background light. This single channel imaging receiver is composed of an imaging lens and a small photo-sensitive area photodiode attached on a 2-axis actuator. The actuator and photodiode are placed on the focal plane of the lens to search for the focused light spot. The actuator is voice-coil based and it is low cost and commercially available. With this single channel imaging receiver, bit rate as high as 12.5 Gbps has been successfully demonstrated and the maximum error-free (BER<10−9) beam footprint is even larger than 1 m. Compared with our previous experimental results with a single wide field-of-view non-imaging receiver, an improvement in error-free beam footprint of >20% has been achieved. When this system is integrated with our recently proposed optical wireless based indoor localization system, both high speed wireless communication and mobility can be provided to users over the entire room. Furthermore, theoretical analysis has been carried out and the simulation results agree well with the experiments. In addition, since the rough location information of the user is available in our proposed system, instead of searching for the focused light spot over a large area on the focal plane of the lens, only a small possible area needs to be scanned. By further pre-setting a proper comparison threshold when searching for the focused light spot, the time needed for searching can be further reduced.

© 2012 OSA

Full Article  |  PDF Article

Corrections

Ke Wang, Ampalavanapillai Nirmalathas, Christina Lim, and Efstratios Skafidas, "High-speed indoor optical wireless communication system with single channel imaging receiver: erratum," Opt. Express 20, 25356-25356 (2012)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-23-25356

References

  • View by:
  • |
  • |
  • |

  1. P. Heron, “Next generation optical access networks,” in Proceedings of Advanced Photonics Congress – Access Networks and In-House Communications (Toronto, Canada, 2011), AMA2.
  2. M. Daneshmand, C. Wang, and W. Wei, “Advances in passive optical networks,” IEEE Commun. Mag. 49(2), s12–s14 (2011).
    [CrossRef]
  3. N. Deb and H. Anis, “Wavelength remodulation scheme using DPSK downstream and upstream for DWDM-PONs,” Opt. Express 19(17), 16418–16422 (2011).
    [CrossRef] [PubMed]
  4. D. Visani, C. Okonkwo, S. Loquai, H. Yang, S. Yan, H. van den Boom, T. Ditewig, G. Tartarini, J. Lee, T. Koonen, and E. Tangdiongga, “Beyond 1 Gbit/s transmission over 1mm diameter plastic optical fiber employing DMT for in-house communication systems,” J. Lightwave Technol. 29, 622–628 (2011).
  5. R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, and C. Caspar, “High-speed transmission in multi-mode fibers,” J. Lightwave Technol. 28(4), 569–586 (2010).
    [CrossRef]
  6. I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
    [CrossRef]
  7. C. Liu, E. Skafidas, and R. Evans, “Capacity and data rate for millimeter wavelength systems in a short range package radio transceiver,” IEEE Trans. Wirel. Comm. 9(3), 903–906 (2010).
    [CrossRef]
  8. E. Skafidas, F. Zhang, B. Yang, B. N. Wicks, Z. Liu, C. M. Ta, Y. Mo, K. Wang, G. Felic, P. Nadagouda, and T. Walsh, W. Shiehm I. Mareels, and R. Evans, “A 60GHz transceiver on CMOS,” in Proceedings of International Topical Meeting on Microwave Photonics (Sydney, Australia, 2008), 306–309.
  9. B. Yang, Y. Mo, K. Wang, Y. Feng, B. Wicks, C. M. Ta, F. Zhang, Z. Liu, C. Liu, G. Felic, P. Nadagouda, T. Walsh, and E. Skafidas, “Implementation of a gigabit per second millimeter wave transceiver on CMOS,” in Proceedings of 2nd International Conference on Wireless Broadband and Ultra Wideband Communications (Sydney, Australia, 2007), 71–74.
  10. J. Lee, Y. Chen, and Y. Huang, “A low-power low-cost fully-integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly,” IEEE J. Solid-state Circuits 45(2), 264–275 (2010).
    [CrossRef]
  11. F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67(11), 1474–1486 (1979).
    [CrossRef]
  12. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [CrossRef]
  13. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Comm. 11(3), 367–379 (1993).
    [CrossRef]
  14. M. Alresheedi and J. M. H. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Commun. 29(6), 1328–1340 (2011).
    [CrossRef]
  15. A. Islam, M. Bakaul, A. Nirmalathas, and G. E. Town, “Millimeter-wave radio-over-fiber system based on heterodyned unlocked light sources and self-homodyne RF receiver,” IEEE Photon. Technol. Lett. 23(8), 459–461 (2011).
    [CrossRef]
  16. C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, Y. Ka-Lun Lee, D. Yizhuo Yang, Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28(4), 390–405 (2010).
    [CrossRef]
  17. Y.-T. Hsueh, H.-C. Chien, A. Chowdhury, J. Yu, and G.-K. Chang, “Performance assessment of radio links using millimeter-wave over fiber technology with carrier suppression through modulation index enhancement,” J. Opt. Commun. Netw. 3(3), 254–258 (2011).
    [CrossRef]
  18. C. H. Yeh and C. W. Chow, “Heterogeneous radio-over-fiber passive access network architecture to mitigate Rayleigh backscattering interferometric beat noise,” Opt. Express 19(7), 5735–5740 (2011).
    [CrossRef] [PubMed]
  19. AS/NZS 2211.1:2004, Safety of Laser Products (Standards Australia International Ltd and Standards New Zealand, 2004).
  20. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
    [CrossRef] [PubMed]
  21. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Indoor gigabit optical wireless communication system for personal area networks”, in Proceedings of 23rd IEEE Photonics Society Annual Meeting (Denver, 2010), 224–225.
  22. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Gigabit optical wireless communication system for indoor applications”, in Proceedings of Asia Communications and Photonics Conference and Exhibition (Shanghai, China, 2010), 453–454.
  23. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett. 23(8), 519–521 (2011).
    [CrossRef]
  24. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Impact of background light induced shot noise in high-speed full-duplex indoor optical wireless communication systems,” Opt. Express 19(22), 21321–21332 (2011).
    [CrossRef] [PubMed]
  25. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “12.5Gbps indoor optical wireless communication system with single channel imaging receiver,” in Proceedings of European Conference on Optical Communication (Geneva, Switzerland, 2011), Tu.3.C.6.
  26. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed 4 × 12.5Gbps WDM optical wireless communication systems for indoor applications,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (Los Angeles, 2011), JWA081.
  27. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “4 × 12.5Gbps WDM optical wireless communication system for indoor applications,” J. Lightwave Technol. 29(13), 1988–1996 (2011).
    [CrossRef]
  28. J. B. Carruthers, “Multipath channels in wireless infrared communications: modeling, angle diversity and estimation,” Ph.D. dissertation, Univ. of California, Berkeley (1997).
  29. B. Leskovar, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci. 36(1), 787–793 (1989).
    [CrossRef]

2011 (10)

M. Daneshmand, C. Wang, and W. Wei, “Advances in passive optical networks,” IEEE Commun. Mag. 49(2), s12–s14 (2011).
[CrossRef]

N. Deb and H. Anis, “Wavelength remodulation scheme using DPSK downstream and upstream for DWDM-PONs,” Opt. Express 19(17), 16418–16422 (2011).
[CrossRef] [PubMed]

D. Visani, C. Okonkwo, S. Loquai, H. Yang, S. Yan, H. van den Boom, T. Ditewig, G. Tartarini, J. Lee, T. Koonen, and E. Tangdiongga, “Beyond 1 Gbit/s transmission over 1mm diameter plastic optical fiber employing DMT for in-house communication systems,” J. Lightwave Technol. 29, 622–628 (2011).

M. Alresheedi and J. M. H. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Commun. 29(6), 1328–1340 (2011).
[CrossRef]

A. Islam, M. Bakaul, A. Nirmalathas, and G. E. Town, “Millimeter-wave radio-over-fiber system based on heterodyned unlocked light sources and self-homodyne RF receiver,” IEEE Photon. Technol. Lett. 23(8), 459–461 (2011).
[CrossRef]

Y.-T. Hsueh, H.-C. Chien, A. Chowdhury, J. Yu, and G.-K. Chang, “Performance assessment of radio links using millimeter-wave over fiber technology with carrier suppression through modulation index enhancement,” J. Opt. Commun. Netw. 3(3), 254–258 (2011).
[CrossRef]

C. H. Yeh and C. W. Chow, “Heterogeneous radio-over-fiber passive access network architecture to mitigate Rayleigh backscattering interferometric beat noise,” Opt. Express 19(7), 5735–5740 (2011).
[CrossRef] [PubMed]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett. 23(8), 519–521 (2011).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Impact of background light induced shot noise in high-speed full-duplex indoor optical wireless communication systems,” Opt. Express 19(22), 21321–21332 (2011).
[CrossRef] [PubMed]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “4 × 12.5Gbps WDM optical wireless communication system for indoor applications,” J. Lightwave Technol. 29(13), 1988–1996 (2011).
[CrossRef]

2010 (5)

2009 (1)

I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
[CrossRef]

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

1993 (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Comm. 11(3), 367–379 (1993).
[CrossRef]

1989 (1)

B. Leskovar, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci. 36(1), 787–793 (1989).
[CrossRef]

1979 (1)

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67(11), 1474–1486 (1979).
[CrossRef]

Alresheedi, M.

M. Alresheedi and J. M. H. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Commun. 29(6), 1328–1340 (2011).
[CrossRef]

Anis, H.

Bakaul, M.

A. Islam, M. Bakaul, A. Nirmalathas, and G. E. Town, “Millimeter-wave radio-over-fiber system based on heterodyned unlocked light sources and self-homodyne RF receiver,” IEEE Photon. Technol. Lett. 23(8), 459–461 (2011).
[CrossRef]

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, Y. Ka-Lun Lee, D. Yizhuo Yang, Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28(4), 390–405 (2010).
[CrossRef]

Bapst, U.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67(11), 1474–1486 (1979).
[CrossRef]

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Comm. 11(3), 367–379 (1993).
[CrossRef]

Bluschke, A.

I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
[CrossRef]

Bunge, C. A.

Caspar, C.

Chang, G.-K.

Chen, Y.

J. Lee, Y. Chen, and Y. Huang, “A low-power low-cost fully-integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly,” IEEE J. Solid-state Circuits 45(2), 264–275 (2010).
[CrossRef]

Chien, H.-C.

Chow, C. W.

Chowdhury, A.

Daneshmand, M.

M. Daneshmand, C. Wang, and W. Wei, “Advances in passive optical networks,” IEEE Commun. Mag. 49(2), s12–s14 (2011).
[CrossRef]

Deb, N.

Ditewig, T.

Elmirghani, J. M. H.

M. Alresheedi and J. M. H. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Commun. 29(6), 1328–1340 (2011).
[CrossRef]

Evans, R.

C. Liu, E. Skafidas, and R. Evans, “Capacity and data rate for millimeter wavelength systems in a short range package radio transceiver,” IEEE Trans. Wirel. Comm. 9(3), 903–906 (2010).
[CrossRef]

Freund, R. E.

Gamage, P.

Gaudino, R.

I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
[CrossRef]

Gfeller, F. R.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67(11), 1474–1486 (1979).
[CrossRef]

Hsueh, Y.-T.

Huang, Y.

J. Lee, Y. Chen, and Y. Huang, “A low-power low-cost fully-integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly,” IEEE J. Solid-state Circuits 45(2), 264–275 (2010).
[CrossRef]

Islam, A.

A. Islam, M. Bakaul, A. Nirmalathas, and G. E. Town, “Millimeter-wave radio-over-fiber system based on heterodyned unlocked light sources and self-homodyne RF receiver,” IEEE Photon. Technol. Lett. 23(8), 459–461 (2011).
[CrossRef]

Jager, D.

I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
[CrossRef]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Comm. 11(3), 367–379 (1993).
[CrossRef]

Ka-Lun Lee, Y.

Koonen, T.

D. Visani, C. Okonkwo, S. Loquai, H. Yang, S. Yan, H. van den Boom, T. Ditewig, G. Tartarini, J. Lee, T. Koonen, and E. Tangdiongga, “Beyond 1 Gbit/s transmission over 1mm diameter plastic optical fiber employing DMT for in-house communication systems,” J. Lightwave Technol. 29, 622–628 (2011).

I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
[CrossRef]

Kragl, H.

I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
[CrossRef]

Krause, W. J.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Comm. 11(3), 367–379 (1993).
[CrossRef]

Ledentsov, N. N.

Lee, E. A.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Comm. 11(3), 367–379 (1993).
[CrossRef]

Lee, J.

D. Visani, C. Okonkwo, S. Loquai, H. Yang, S. Yan, H. van den Boom, T. Ditewig, G. Tartarini, J. Lee, T. Koonen, and E. Tangdiongga, “Beyond 1 Gbit/s transmission over 1mm diameter plastic optical fiber employing DMT for in-house communication systems,” J. Lightwave Technol. 29, 622–628 (2011).

J. Lee, Y. Chen, and Y. Huang, “A low-power low-cost fully-integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly,” IEEE J. Solid-state Circuits 45(2), 264–275 (2010).
[CrossRef]

Leskovar, B.

B. Leskovar, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci. 36(1), 787–793 (1989).
[CrossRef]

Lezzi, C.

I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
[CrossRef]

Lim, C.

Liu, C.

C. Liu, E. Skafidas, and R. Evans, “Capacity and data rate for millimeter wavelength systems in a short range package radio transceiver,” IEEE Trans. Wirel. Comm. 9(3), 903–906 (2010).
[CrossRef]

Loquai, S.

Messerschmitt, D. G.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Comm. 11(3), 367–379 (1993).
[CrossRef]

Molin, D.

Mollers, I.

I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
[CrossRef]

Nirmalathas, A.

Nocivelli, A.

I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
[CrossRef]

Novak,

Okonkwo, C.

Randel, S.

I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
[CrossRef]

Skafidas, E.

Tangdiongga, E.

Tartarini, G.

Town, G. E.

A. Islam, M. Bakaul, A. Nirmalathas, and G. E. Town, “Millimeter-wave radio-over-fiber system based on heterodyned unlocked light sources and self-homodyne RF receiver,” IEEE Photon. Technol. Lett. 23(8), 459–461 (2011).
[CrossRef]

van den Boom, H.

Visani, D.

Wang, C.

M. Daneshmand, C. Wang, and W. Wei, “Advances in passive optical networks,” IEEE Commun. Mag. 49(2), s12–s14 (2011).
[CrossRef]

Wang, K.

Waterhouse, R.

Weber, N.

I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
[CrossRef]

Wei, W.

M. Daneshmand, C. Wang, and W. Wei, “Advances in passive optical networks,” IEEE Commun. Mag. 49(2), s12–s14 (2011).
[CrossRef]

Yan, S.

Yang, H.

Yeh, C. H.

Yizhuo Yang, D.

Yu, J.

Ziemann, O.

I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
[CrossRef]

IEEE Commun. Mag. (2)

M. Daneshmand, C. Wang, and W. Wei, “Advances in passive optical networks,” IEEE Commun. Mag. 49(2), s12–s14 (2011).
[CrossRef]

I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project pof-all,” IEEE Commun. Mag. 47(8), 58–68 (2009).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Comm. 11(3), 367–379 (1993).
[CrossRef]

IEEE J. Sel. Commun. (1)

M. Alresheedi and J. M. H. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Commun. 29(6), 1328–1340 (2011).
[CrossRef]

IEEE J. Solid-state Circuits (1)

J. Lee, Y. Chen, and Y. Huang, “A low-power low-cost fully-integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly,” IEEE J. Solid-state Circuits 45(2), 264–275 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Islam, M. Bakaul, A. Nirmalathas, and G. E. Town, “Millimeter-wave radio-over-fiber system based on heterodyned unlocked light sources and self-homodyne RF receiver,” IEEE Photon. Technol. Lett. 23(8), 459–461 (2011).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett. 23(8), 519–521 (2011).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

B. Leskovar, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci. 36(1), 787–793 (1989).
[CrossRef]

IEEE Trans. Wirel. Comm. (1)

C. Liu, E. Skafidas, and R. Evans, “Capacity and data rate for millimeter wavelength systems in a short range package radio transceiver,” IEEE Trans. Wirel. Comm. 9(3), 903–906 (2010).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Opt. Express (4)

Proc. IEEE (2)

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67(11), 1474–1486 (1979).
[CrossRef]

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

Other (9)

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Indoor gigabit optical wireless communication system for personal area networks”, in Proceedings of 23rd IEEE Photonics Society Annual Meeting (Denver, 2010), 224–225.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Gigabit optical wireless communication system for indoor applications”, in Proceedings of Asia Communications and Photonics Conference and Exhibition (Shanghai, China, 2010), 453–454.

AS/NZS 2211.1:2004, Safety of Laser Products (Standards Australia International Ltd and Standards New Zealand, 2004).

E. Skafidas, F. Zhang, B. Yang, B. N. Wicks, Z. Liu, C. M. Ta, Y. Mo, K. Wang, G. Felic, P. Nadagouda, and T. Walsh, W. Shiehm I. Mareels, and R. Evans, “A 60GHz transceiver on CMOS,” in Proceedings of International Topical Meeting on Microwave Photonics (Sydney, Australia, 2008), 306–309.

B. Yang, Y. Mo, K. Wang, Y. Feng, B. Wicks, C. M. Ta, F. Zhang, Z. Liu, C. Liu, G. Felic, P. Nadagouda, T. Walsh, and E. Skafidas, “Implementation of a gigabit per second millimeter wave transceiver on CMOS,” in Proceedings of 2nd International Conference on Wireless Broadband and Ultra Wideband Communications (Sydney, Australia, 2007), 71–74.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “12.5Gbps indoor optical wireless communication system with single channel imaging receiver,” in Proceedings of European Conference on Optical Communication (Geneva, Switzerland, 2011), Tu.3.C.6.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed 4 × 12.5Gbps WDM optical wireless communication systems for indoor applications,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (Los Angeles, 2011), JWA081.

J. B. Carruthers, “Multipath channels in wireless infrared communications: modeling, angle diversity and estimation,” Ph.D. dissertation, Univ. of California, Berkeley (1997).

P. Heron, “Next generation optical access networks,” in Proceedings of Advanced Photonics Congress – Access Networks and In-House Communications (Toronto, Canada, 2011), AMA2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Proposed system architecture.

Fig. 2
Fig. 2

Room configuration considered in simulation.

Fig. 3
Fig. 3

Simulation results on received background light power. (a) System with single channel imaging receiver and (b) with non-imaging receiver.

Fig. 4
Fig. 4

Simulated 1Gbps system performance. (a) SNR and (b) BER.

Fig. 5
Fig. 5

Simulated BER of the 1Gbps system for different transmission powers.

Fig. 6
Fig. 6

Proof-of-concept experimental setup.

Fig. 7
Fig. 7

Experimental results on BER with respect to distances from beam center for the 10 Gbps system.

Fig. 8
Fig. 8

Experimental results on BER with respect to distances from beam center for the 12.5 Gbps system.

Fig. 9
Fig. 9

BER at beam boundary for different beam footprints.

Fig. 10
Fig. 10

(a) Maximum error-free beam footprint with respect to bit rates when the transmission power is fixed at 7mW and (b) improvement in beam footprint in percentage.

Fig. 11
Fig. 11

BER at beam boundary for different transmission powers when bit rate is 1 Gbps and beam footprint is 2 m.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I(φ)= n+1 2π × P t × cos n (φ)
d f =F z t z ( x t x ) 2 + ( y t y ) 2
SNR= ( R×( P s1 P s0 ) σ 0 + σ 1 ) 2
BER= 1 2 erfc( SNR 2 )
σ 0 2 = σ pr 2 + σ bn 2 + σ s0 2
σ 1 2 = σ pr 2 + σ bn 2 + σ s1 2
σ 0 2 = σ 1 2 = σ 2 = σ pr 2 + σ bn 2
σ pr 2 =( 4kT R F +2e I L ) I 2 B+ 4kTΓ g m (2π C T ) 2 A F f c B 2 + 4kTΓ g m (2π C T ) 2 I 3 B 3
σ bn 2 =2eR P bn I 2 B

Metrics