Abstract

In this paper we investigate an interesting modulation format for fiber optic communications, set-partitioning 128 polarization-multiplexed 16-QAM (128-SP-QAM), which consists of the symbols with even parity from the symbol alphabet of polarization-multiplexed 16-QAM (PM-16-QAM). We compare 128-SP-QAM and PM-16-QAM using numerical simulations in long-haul transmission scenarios at bit rates of 112 Gbit/s and 224 Gbit/s, and at the same symbol rates (14 and 28 Gbaud). The transmission link is made up of standard single-mode fiber with 60, 80 or 100 km amplifier spacing and both single channel and WDM transmission (25- and 50 GHz-spaced) is investigated. The results show that 128-SP-QAM achieves more than 40% increase in transmission reach compared to PM-16-QAM at the same data rate for all cases studied for a bit error rate of 10−3. In addition, we find that in single channel transmission there is, as expected, an advantage in terms of transmission distance when using a data rate of 112 Gbit/s as compared to 224 Gbit/s. However, when comparing the two different WDM systems with the same aggregate data rates, the reach is similar due to the smaller impact of nonlinear crosstalk between the WDM channels in the systems with 50 GHz spacing. We also discuss decoding and phase estimation of 128-SP-QAM and implement differential coding, which avoids error bursts due to cycle slips in the phase estimation. Simulations including laser phase noise show that the phase noise tolerance is similar for the two formats, with 0.5 dB OSNR penalty compared to the case with zero phase noise for a laser linewidth to symbol rate ratio of 10−4.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
    [CrossRef]
  2. H. Sun, K. T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16(2), 873–879 (2008).
    [CrossRef] [PubMed]
  3. J.-X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. J. Lucero, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. M. Mohs, and N. S. Bergano, “Transmission of 96x100-Gb/s bandwidth-constrained PDM-RZ-QPSK channels with 300% spectral efficiency over 10610 km and 400% spectral efficiency over 4370 km,” J. Lightwave Technol. 29(4), 491–498 (2011).
    [CrossRef]
  4. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
    [CrossRef]
  5. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-high capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-band wideband optical amplification,” J. Lightwave Technol. 29(4), 578–586 (2011).
    [CrossRef]
  6. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
    [CrossRef] [PubMed]
  7. E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol. 27(22), 5115–5126 (2009).
    [CrossRef]
  8. X. Liu, T. H. Wood, R. W. Tkach and S. Chandrasekhar “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB1.
  9. H. Bülow, “Polarization QAM modulation (POLQAM) for coherent detection schemes,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWG2.
  10. L. D. Coelho and N. Hanik, “Global optimization of fiber-optic communication systems using four-dimensional modulation formats,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Mo.2.B.4. .
  11. G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf. Theory 28(1), 55–67 (1982).
    [CrossRef]
  12. P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for nonlinear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
    [CrossRef] [PubMed]
  13. M. Karlsson and E. Agrell, “Spectrally efficient four-dimensional modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu2C.1
  14. J. H. Conway and N. J. A. Sloane, “Fast quantizing and decoding algorithms for lattice quantizers and codes,” IEEE Trans. Inf. Theory 28(2), 227–232 (1982).
    [CrossRef]
  15. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [CrossRef]
  16. P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19(8), 7734–7741 (2011).
    [CrossRef] [PubMed]
  17. C. Xie, “Local oscillator induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMT4.
  18. D. Wang and C. R. Menyuk, “Polarization evolution due to the Kerr nonlinearity and chromatic dispersion,” J. Lightwave Technol. 17(12), 2520–2529 (1999).
    [CrossRef]
  19. P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched QPSK (PS-QPSK) in dispersion managed WDM transmissions,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper Th.10.E.2.
  20. P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
    [CrossRef]

2011 (4)

2010 (2)

2009 (3)

2008 (1)

2006 (1)

1999 (1)

1982 (2)

G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf. Theory 28(1), 55–67 (1982).
[CrossRef]

J. H. Conway and N. J. A. Sloane, “Fast quantizing and decoding algorithms for lattice quantizers and codes,” IEEE Trans. Inf. Theory 28(2), 227–232 (1982).
[CrossRef]

Agrell, E.

Andrekson, P. A.

Bergano, N. S.

Bosco, G.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for nonlinear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
[CrossRef] [PubMed]

Buhl, L. L.

Cai, J.-X.

Cai, Y.

Carena, A.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for nonlinear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
[CrossRef] [PubMed]

Conway, J. H.

J. H. Conway and N. J. A. Sloane, “Fast quantizing and decoding algorithms for lattice quantizers and codes,” IEEE Trans. Inf. Theory 28(2), 227–232 (1982).
[CrossRef]

Curri, V.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for nonlinear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
[CrossRef] [PubMed]

Davidson, C. R.

Doerr, C. R.

Forghieri, F.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for nonlinear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
[CrossRef] [PubMed]

Foursa, D. G.

Fujiwara, M.

Gnauck, A. H.

Hoffmann, S.

Horikoshi, K.

Ishii, H.

Johannisson, P.

Karlsson, M.

Katoh, K.

Kikuchi, K.

Kobayashi, T.

Lucero, A. J.

Ly-Gagnon, D.-S.

Magarini, M.

Masuda, H.

Matsui, M.

Menyuk, C. R.

Miot, V.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

Miyamoto, Y.

Mizoguchi, M.

Mohs, G. M.

Noé, R.

Patterson, W. W.

Pfau, T.

Pilipetskii, A. N.

Poggiolini, P.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for nonlinear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
[CrossRef] [PubMed]

Roberts, K.

Sakamaki, Y.

Sano, A.

Sinkin, O. V.

Sjödin, M.

Sloane, N. J. A.

J. H. Conway and N. J. A. Sloane, “Fast quantizing and decoding algorithms for lattice quantizers and codes,” IEEE Trans. Inf. Theory 28(2), 227–232 (1982).
[CrossRef]

Sun, H.

Tsukamoto, S.

Ungerboeck, G.

G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf. Theory 28(1), 55–67 (1982).
[CrossRef]

Wang, D.

Winzer, P. J.

Wu, K. T.

Wymeersch, H.

Yamazaki, H.

Yoshida, E.

IEEE Photon. Technol. Lett. (1)

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

IEEE Trans. Inf. Theory (2)

G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf. Theory 28(1), 55–67 (1982).
[CrossRef]

J. H. Conway and N. J. A. Sloane, “Fast quantizing and decoding algorithms for lattice quantizers and codes,” IEEE Trans. Inf. Theory 28(2), 227–232 (1982).
[CrossRef]

J. Lightwave Technol. (7)

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
[CrossRef]

E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol. 27(22), 5115–5126 (2009).
[CrossRef]

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
[CrossRef]

J.-X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. J. Lucero, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. M. Mohs, and N. S. Bergano, “Transmission of 96x100-Gb/s bandwidth-constrained PDM-RZ-QPSK channels with 300% spectral efficiency over 10610 km and 400% spectral efficiency over 4370 km,” J. Lightwave Technol. 29(4), 491–498 (2011).
[CrossRef]

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-high capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-band wideband optical amplification,” J. Lightwave Technol. 29(4), 578–586 (2011).
[CrossRef]

D. Wang and C. R. Menyuk, “Polarization evolution due to the Kerr nonlinearity and chromatic dispersion,” J. Lightwave Technol. 17(12), 2520–2529 (1999).
[CrossRef]

D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
[CrossRef]

Opt. Express (4)

Other (6)

C. Xie, “Local oscillator induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMT4.

P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched QPSK (PS-QPSK) in dispersion managed WDM transmissions,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper Th.10.E.2.

M. Karlsson and E. Agrell, “Spectrally efficient four-dimensional modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu2C.1

X. Liu, T. H. Wood, R. W. Tkach and S. Chandrasekhar “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB1.

H. Bülow, “Polarization QAM modulation (POLQAM) for coherent detection schemes,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWG2.

L. D. Coelho and N. Hanik, “Global optimization of fiber-optic communication systems using four-dimensional modulation formats,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Mo.2.B.4. .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Gray-coded 16-QAM in one polarization. (b)-(c) The example 128-SP-QAM symbol with the bit sequence 1101011 in the x- and the y-polarizations, respectively.

Fig. 2
Fig. 2

16-QAM with differential coding.

Fig. 3
Fig. 3

(a) The transmitter used to generate 128-SP-QAM and PM-16-QAM. (b) The transmission link.

Fig. 4
Fig. 4

The coherent receiver used in the simulations.

Fig. 5
Fig. 5

The BER as a function of the OSNR for 128-SP-QAM at 14 and 16 Gbaud (112 Gbit/s) and for PM-16-QAM at 112 Gbit/s. The thin curves show simulation results for 1 sample per symbol for non-differential coding (dashed lines) and differential coding. The thick lines show the performance when the complete simulation setup is used, including filters.

Fig. 6
Fig. 6

OSNR required for BER = 10−3 as a function of ∆ν∙T for different block lengths in the phase estimation algorithm for (a) 112 Gbit/s 128-SP-QAM and (b) 112 Gbit/s PM-16-QAM. (c) The required OSNR for the optimal block length for each value of ∆ν∙T.

Fig. 7
Fig. 7

Transmission distance for different span lengths and data rates for the two different systems. Both the single channel case and the WDM case are shown. (a) 60 km span length, 112 Gbit/s. (b) 60 km span length, 224 Gbit/s. (c) 80 km span length, 112 Gbit/s. (d) 80 km span length, 224 Gbit/s. (e) 100 km span length, 112 Gbit/s. (f) 100 km span length, 224 Gbit/s.

Tables (1)

Tables Icon

Table 1 Figure Legend for Fig. 7

Metrics