Abstract

We investigate field enhancement properties of a tapered parallel plate waveguide for ultrashort terahertz (THz) pulses. We use two independent methods, air biased coherent detection inside the waveguide and free-space electro-optic sampling, respectively, which enables a calibrated, quantitative measurement of the field strength at the output of the waveguide. Field enhancement factors greater than 20 are demonstrated and record-high field strengths of > 1.4 MV/cm are reached. We find an excellent agreement between the two independent methods of field measurement and a numerical 3D full-vectorial time-domain simulations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
    [CrossRef]
  2. J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83, 4342–4368 (2011).
    [CrossRef] [PubMed]
  3. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  4. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [CrossRef] [PubMed]
  5. A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Giant terahertz near-field enhancement by two-dimensional plasmons,” arXiv:1109.3943v2 (2011).
  6. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
    [CrossRef]
  7. D. J. Park, S. B. Choi, Y. H. Ahn, F. Rotermund, I. B. Sohn, Chul Kang, M. S. Jeong, and D. S. Kim, “Terahertz near-field enhancement in narrow rectangular apertures on metal film,” Opt. Express 17, 12493–12501 (2009).
    [CrossRef] [PubMed]
  8. J. Lee, K. Lee, H. Park, G. Kang, D.-H. Yu, and K. Kim, “Tubable subwavelength focusing with dispersion-engineered metamertials in the terahertz regime,” Opt. Lett. 35, 2254–2256 (2010).
    [CrossRef] [PubMed]
  9. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
    [CrossRef]
  10. T. D. Nguyen, Z. V. Vardeny, and A. Nahata, “Concentration of terahertz radiation through a conically tapered aperture,” Opt. Express 18, 25441–25448 (2010).
    [CrossRef] [PubMed]
  11. M. Theuer, S. Sree Harsha, and D. Grischkowsky, “Flare coupled metal parallel-plate waveguides for high resolution terahertz time-domain spectroscopy,” J. Appl. Phys. 108, 113105 (2010).
    [CrossRef]
  12. S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express 18, 1289–1295 (2010).
    [CrossRef] [PubMed]
  13. H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010).
    [CrossRef] [PubMed]
  14. H. Zhan, R. Mendis, and D. M. Mittleman, “Characterization of the terahertz near-field output of parallel-plate waveguides,” J. Opt. Soc. Am. B 28, 558–566 (2011).
    [CrossRef]
  15. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16, 18576–18589 (2008).
    [CrossRef]
  16. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L.E. Hueso, A. Chuvilin, and R. Hillebrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
    [CrossRef]
  17. I.-Y Park, S. Kim, J. Choi, D.-H Lee, Y.-J Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5, 677–681 (2011).
    [CrossRef]
  18. M. C. Hoffmann and J. A. Fulop, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D Appl. Phys. 44, 08300 (2011).
    [CrossRef]
  19. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2008).
  20. S. Ramo, J. R. Whinnery, and T. V. Duzer, Field and Waves in Communications, 3rd ed. (Wiley, 1993).
  21. C.A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  22. K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, “Non-invasive terahertz field imaging inside parallel plate waveguides,” Appl. Phys. Lett 99, 071113 (2011).
    [CrossRef]
  23. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–33525 (1995).
    [CrossRef]
  24. P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
    [CrossRef]
  25. A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150 (1996).
    [CrossRef]
  26. Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D: Appl. Phys. 22, 682 (1989).
    [CrossRef]
  27. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
    [CrossRef]

2011 (7)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[CrossRef]

J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83, 4342–4368 (2011).
[CrossRef] [PubMed]

H. Zhan, R. Mendis, and D. M. Mittleman, “Characterization of the terahertz near-field output of parallel-plate waveguides,” J. Opt. Soc. Am. B 28, 558–566 (2011).
[CrossRef]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L.E. Hueso, A. Chuvilin, and R. Hillebrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

I.-Y Park, S. Kim, J. Choi, D.-H Lee, Y.-J Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5, 677–681 (2011).
[CrossRef]

M. C. Hoffmann and J. A. Fulop, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D Appl. Phys. 44, 08300 (2011).
[CrossRef]

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, “Non-invasive terahertz field imaging inside parallel plate waveguides,” Appl. Phys. Lett 99, 071113 (2011).
[CrossRef]

2010 (5)

2009 (2)

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

D. J. Park, S. B. Choi, Y. H. Ahn, F. Rotermund, I. B. Sohn, Chul Kang, M. S. Jeong, and D. S. Kim, “Terahertz near-field enhancement in narrow rectangular apertures on metal film,” Opt. Express 17, 12493–12501 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16, 18576–18589 (2008).
[CrossRef]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

2006 (1)

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

2001 (1)

1996 (2)

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150 (1996).
[CrossRef]

1995 (1)

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–33525 (1995).
[CrossRef]

1989 (1)

Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D: Appl. Phys. 22, 682 (1989).
[CrossRef]

Ahn, Y. H.

Alonso-Gonzalez, P.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L.E. Hueso, A. Chuvilin, and R. Hillebrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Andryieuski, A.

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, “Non-invasive terahertz field imaging inside parallel plate waveguides,” Appl. Phys. Lett 99, 071113 (2011).
[CrossRef]

Arzubiaga, L.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L.E. Hueso, A. Chuvilin, and R. Hillebrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Auston, D. H.

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150 (1996).
[CrossRef]

Balanis, C.A.

C.A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Baxter, J. B.

J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83, 4342–4368 (2011).
[CrossRef] [PubMed]

Berozashvili, Y.

Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D: Appl. Phys. 22, 682 (1989).
[CrossRef]

Casanova, F.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L.E. Hueso, A. Chuvilin, and R. Hillebrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Chen, Y.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Chirakadze, A.

Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D: Appl. Phys. 22, 682 (1989).
[CrossRef]

Choi, J.

I.-Y Park, S. Kim, J. Choi, D.-H Lee, Y.-J Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5, 677–681 (2011).
[CrossRef]

Choi, S. B.

Choi, S. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Chuvilin, A.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L.E. Hueso, A. Chuvilin, and R. Hillebrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[CrossRef]

Dai, J.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Davoyan, A. R.

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Giant terahertz near-field enhancement by two-dimensional plasmons,” arXiv:1109.3943v2 (2011).

Durach, M.

Duzer, T. V.

S. Ramo, J. R. Whinnery, and T. V. Duzer, Field and Waves in Communications, 3rd ed. (Wiley, 1993).

Fletcher, C.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Fulop, J. A.

M. C. Hoffmann and J. A. Fulop, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D Appl. Phys. 44, 08300 (2011).
[CrossRef]

Garcia-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Grischkowsky, D.

M. Theuer, S. Sree Harsha, and D. Grischkowsky, “Flare coupled metal parallel-plate waveguides for high resolution terahertz time-domain spectroscopy,” J. Appl. Phys. 108, 113105 (2010).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
[CrossRef]

Guglietta, G. W.

J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83, 4342–4368 (2011).
[CrossRef] [PubMed]

Heinz, T. F.

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150 (1996).
[CrossRef]

Helm, H.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

Hillebrand, R.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L.E. Hueso, A. Chuvilin, and R. Hillebrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Hoffmann, M. C.

M. C. Hoffmann and J. A. Fulop, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D Appl. Phys. 44, 08300 (2011).
[CrossRef]

Hueso, L.E.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L.E. Hueso, A. Chuvilin, and R. Hillebrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Iwaszczuk, K.

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, “Non-invasive terahertz field imaging inside parallel plate waveguides,” Appl. Phys. Lett 99, 071113 (2011).
[CrossRef]

Jeon, T.-I.

Jeong, M. S.

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[CrossRef]

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, “Non-invasive terahertz field imaging inside parallel plate waveguides,” Appl. Phys. Lett 99, 071113 (2011).
[CrossRef]

Ji, Y. B.

Johnson, K.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Kang, Chul

Kang, G.

Kang, J. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Karpowicz, N.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Keiding, S. R.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

Kim, D. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

D. J. Park, S. B. Choi, Y. H. Ahn, F. Rotermund, I. B. Sohn, Chul Kang, M. S. Jeong, and D. S. Kim, “Terahertz near-field enhancement in narrow rectangular apertures on metal film,” Opt. Express 17, 12493–12501 (2009).
[CrossRef] [PubMed]

Kim, K.

Kim, S.

I.-Y Park, S. Kim, J. Choi, D.-H Lee, Y.-J Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5, 677–681 (2011).
[CrossRef]

Kim, S.-H.

Kim, S.-W.

I.-Y Park, S. Kim, J. Choi, D.-H Lee, Y.-J Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5, 677–681 (2011).
[CrossRef]

Kim, Y.-J

I.-Y Park, S. Kim, J. Choi, D.-H Lee, Y.-J Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5, 677–681 (2011).
[CrossRef]

Kling, M. F.

I.-Y Park, S. Kim, J. Choi, D.-H Lee, Y.-J Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5, 677–681 (2011).
[CrossRef]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[CrossRef]

Koo, S. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Lavrinenko, A.

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, “Non-invasive terahertz field imaging inside parallel plate waveguides,” Appl. Phys. Lett 99, 071113 (2011).
[CrossRef]

Lee, D.-H

I.-Y Park, S. Kim, J. Choi, D.-H Lee, Y.-J Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5, 677–681 (2011).
[CrossRef]

Lee, E. S.

Lee, J.

Lee, K.

Lesimple, A.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Lu, X.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Machavariani, S.

Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D: Appl. Phys. 22, 682 (1989).
[CrossRef]

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Mamer, O.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Martin-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Mendis, R.

Mittleman, D. M.

Nahata, A.

T. D. Nguyen, Z. V. Vardeny, and A. Nahata, “Concentration of terahertz radiation through a conically tapered aperture,” Opt. Express 18, 25441–25448 (2010).
[CrossRef] [PubMed]

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150 (1996).
[CrossRef]

Natsvlishvili, A.

Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D: Appl. Phys. 22, 682 (1989).
[CrossRef]

Nelson, K. A.

Nguyen, T. D.

Nikitov, S. A.

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Giant terahertz near-field enhancement by two-dimensional plasmons,” arXiv:1109.3943v2 (2011).

Park, D. J.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

D. J. Park, S. B. Choi, Y. H. Ahn, F. Rotermund, I. B. Sohn, Chul Kang, M. S. Jeong, and D. S. Kim, “Terahertz near-field enhancement in narrow rectangular apertures on metal film,” Opt. Express 17, 12493–12501 (2009).
[CrossRef] [PubMed]

Park, G. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Park, H.

Park, H. R.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Park, I.-Y

I.-Y Park, S. Kim, J. Choi, D.-H Lee, Y.-J Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5, 677–681 (2011).
[CrossRef]

Park, N. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Park, Q. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Paschotta, R.

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2008).

Planken, P. C. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Popov, V. V.

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Giant terahertz near-field enhancement by two-dimensional plasmons,” arXiv:1109.3943v2 (2011).

Price-Gallagher, M.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Ramo, S.

S. Ramo, J. R. Whinnery, and T. V. Duzer, Field and Waves in Communications, 3rd ed. (Wiley, 1993).

Rotermund, F.

Rusina, A.

Schall, M.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

Schnell, M.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L.E. Hueso, A. Chuvilin, and R. Hillebrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Schyja, V.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

Seo, M. A.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Sohn, I. B.

Sree Harsha, S.

M. Theuer, S. Sree Harsha, and D. Grischkowsky, “Flare coupled metal parallel-plate waveguides for high resolution terahertz time-domain spectroscopy,” J. Appl. Phys. 108, 113105 (2010).
[CrossRef]

Stockman, M. I.

I.-Y Park, S. Kim, J. Choi, D.-H Lee, Y.-J Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5, 677–681 (2011).
[CrossRef]

A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16, 18576–18589 (2008).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Suwal, O. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Theuer, M.

M. Theuer, S. Sree Harsha, and D. Grischkowsky, “Flare coupled metal parallel-plate waveguides for high resolution terahertz time-domain spectroscopy,” J. Appl. Phys. 108, 113105 (2010).
[CrossRef]

Uhd Jepsen, P.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

Vardeny, Z. V.

Whinnery, J. R.

S. Ramo, J. R. Whinnery, and T. V. Duzer, Field and Waves in Communications, 3rd ed. (Wiley, 1993).

Winnewisser, C.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

Wu, C.

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150 (1996).
[CrossRef]

Wu, Q.

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–33525 (1995).
[CrossRef]

Yamaguchi, M.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Yu, D.-H.

Zhan, H.

Zhang, Cu.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Zhang, L.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Zhang, X.-C.

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, “Non-invasive terahertz field imaging inside parallel plate waveguides,” Appl. Phys. Lett 99, 071113 (2011).
[CrossRef]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–33525 (1995).
[CrossRef]

Zhao, H.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

Anal. Chem. (1)

J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83, 4342–4368 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett (1)

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, “Non-invasive terahertz field imaging inside parallel plate waveguides,” Appl. Phys. Lett 99, 071113 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–33525 (1995).
[CrossRef]

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150 (1996).
[CrossRef]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, Cu. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,” Appl. Phys. Lett. 92, 011131 (2008).
[CrossRef]

J. Appl. Phys. (1)

M. Theuer, S. Sree Harsha, and D. Grischkowsky, “Flare coupled metal parallel-plate waveguides for high resolution terahertz time-domain spectroscopy,” J. Appl. Phys. 108, 113105 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

M. C. Hoffmann and J. A. Fulop, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D Appl. Phys. 44, 08300 (2011).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D: Appl. Phys. 22, 682 (1989).
[CrossRef]

Laser Photon. Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[CrossRef]

Nat. Photonics (3)

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L.E. Hueso, A. Chuvilin, and R. Hillebrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

I.-Y Park, S. Kim, J. Choi, D.-H Lee, Y.-J Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5, 677–681 (2011).
[CrossRef]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. E (1)

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

Phys. Rev. Lett. (2)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Other (4)

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Giant terahertz near-field enhancement by two-dimensional plasmons,” arXiv:1109.3943v2 (2011).

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2008).

S. Ramo, J. R. Whinnery, and T. V. Duzer, Field and Waves in Communications, 3rd ed. (Wiley, 1993).

C.A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of the tapered parallel plate waveguide, consisting of two aluminum plates of a varying width (input 3 mm, output 49 μm) and adjustable plate separation (1 mm at the input and between 0 μm and 500 μm at the output). (b) Setup for THz wave focussing inside TPPWG. THz radiation is generated using the tilted wavefront method in LiNbO3, coupled into the TPPWG, propagates along it, couples out and is detected in a 300 μm-thick [110] GaP crystal in reflection configuration. Distance between output of TPPWG and the GaP crystal is ∼ 360 μm. HWP - half wave plate. (c) Intensity distributions of the THz spot at the input to the TPPWG measured using a pyroelectric detector with a 250 μm-diameter aperture. The THz beam has elliptical shape with FWHMs of 1.6 mm along x-direction and 0.7 mm along y-direction.

Fig. 2
Fig. 2

Output intensity distributions measured using a pyroelectric detector with a 0.25 mm-diameter aperture placed 0.8 mm away from the waveguide tip for output gaps Bout of 0 μm, 20 μm and 200 μm. Bin = 1 mm.

Fig. 3
Fig. 3

(a) Calculated field reduction FR due to ohmic losses at the output of a TPPWG as a function of the output gap Bout for 0.5, 1.0 and 2.0 THz. (b) Calculated field enhancement FE = E (L)/E0 at the output of a 2D-tapered PPWG as a function of the output gap Bout for 0.5, 1.0 and 2.0 THz. The field enhancement is achieved by energy squeezing in the area between metal plates and is corrected by ohmic losses. Data for input plate spacing Bin = 1000 μm, the total length of the waveguide LWG = 25.4 mm and conductivity of the metal σ = 3.56 · 107 S/m.

Fig. 4
Fig. 4

Simulated peak electric field along the TPPWG for output gaps Bout of 20, 40, 60, 100, 140 and 200 μm. Electric field is normalized to the field at the input to the waveguide. Field values for the center points between plates. Input to the waveguide is at z = −25.4 mm and the output at z = 0.0 mm. Data for Bin = 1000 μm, Win = 3000 μm, Wout = 49 μm, LWG = 25.4 mm and conductivity of the metal σ = 3.56 · 107 S/m.

Fig. 5
Fig. 5

Distributions of the y-component of the peak THz electric field along the TPPWG for Bout of (a–e) 200 μm and (f–j) 20 μm at positions along the waveguide z = −25.1, −9.1, −4.1, −0.1 and 0.9 mm. Note that scales in the left and right column are different (left column range is 0 to 20.000 V/m, right column range is 0 to 100.000 V/m).

Fig. 6
Fig. 6

Calculated diffraction losses in a TPPWG as a function of the output gap Bout for a THz wave at 1.0 THz. Solid line shows exponential fit. Data for Bin = 1000 μm, Win = 3000 μm, Wout = 49 μm, LWG = 25.4 mm and conductivity of the metal σ = 3.56·107 S/m.

Fig. 7
Fig. 7

(a) THz waveforms of radiation transmitted through the TPPWG for various output plate separation Bout. THz radiation is detected in 300 μm-thick [110] GaP crystal positioned ∼ 360 μm away from the waveguide output. Inset shows field outcoupling coefficients, calculated using numerical simulation. (b) Amplitude spectra for various output plate separation Bout.

Fig. 8
Fig. 8

(a) Schematic of the air photonic setup for THz field measurement inside a tapered parallel plate waveguide. THz radiation coupld into the TPPWG, propagates along it and interacts with NIR probe inducing second harmonic generation. F - 400 nm bandpass filter, HV - high voltage source, PMT - photomultiplying tube. (b) Time dependent intensity of THz induced second harmonic (SH) for an output gap of 100 μm with and without DC bias.

Fig. 9
Fig. 9

Peak electric field at the output of the TPPWG for different output gaps Bout.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E ( z ) = E 0 C F E ( z ) .
C = | E G ( x , y ) E U * ( x , y ) d A | | E G ( x , y ) | 2 d A | E U ( x , y ) | 2 d A ,
2 ln ( E ) + ln ( B ) + ln ( W ) = ln ( C ) .
d E E = 1 2 ( d W W + d B B ) .
W ( z ) = W in W in W out L WG z ,
B ( z ) = B in B in B out L WG z ,
d E = α ( z ) 2 E ( z ) d z ,
α ( z ) = 2 n R s Z 0 B .
d E E = α 2 d z 1 2 ( d W W + d B B ) .
E ( z ) = E 0 C W in B in W ( z ) B ( z ) [ 1 ( 1 B out B in ) z L WG ] R s Z 0 L WG B in B out .
I 2 ω ( χ x x x x ( 3 ) I ω ) 2 [ E T H z 2 + 2 E bias E T H z + E bias 2 ] .
I 2 ω [ E T H z 2 + 2 E bias E T H z ] .
I mod = I 2 ω bias I 2 ω 0 I 2 ω 0 = 2 E bias E T H z E T H z 2 ,
E T H z = 2 E bias I mod ,

Metrics