Abstract

An optical hot-wire flow sensing grid is presented using a single piece of self-heated optical fiber to perform distributed flow measurement. The flow-induced temperature loss profiles along the fiber are interrogated by the in-fiber Rayleigh backscattering, and spatially resolved in millimeter resolution using optical frequency domain reflectometry (OFDR). The flow rate, position, and flow direction are retrieved simultaneously. Both electrical and optical on-fiber heating were demonstrated to suit different flow sensing applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Bruun, Hot-Wire Anemometry: Principles and Signal Analysis (Oxford University Press, 1995), Chap. 2.
  2. Y-H. Wang, C-P. Chen, C-M. Chang, C-P. Lin, C-H. Lin, L-M. Fu, and C-Y. Lee, “MEMS-based flow sensors,” Microfluid Nanofluid 6(3), 333–346 (2009).
    [CrossRef]
  3. G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fibre optic reference beam laser Doppler anemometer,” Meas. Sci. Technol. 12(7), 909–913 (2001).
  4. O. Frazão, P. Caldas, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Optical flowmeter using a modal interferometer based on a single nonadiabatic fiber taper,” Opt. Lett. 32(14), 1974–1976 (2007).
    [CrossRef] [PubMed]
  5. L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5(6), 1327–1331 (2005).
    [CrossRef]
  6. C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sen. Actuators A Phys. 127(1), 63–68 (2006).
  7. P. Caldas, P. A. S. Jorge, G. Rego, O. Frazão, J. L. Santos, L. A. Ferreira, and F. Araújo, “Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure,” Appl. Opt. 50(17), 2738–2743 (2011).
    [CrossRef] [PubMed]
  8. S. Gao, A. P. Zhang, H. Y. Tam, L. H. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express 19(11), 10124–10130 (2011).
    [CrossRef] [PubMed]
  9. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
    [CrossRef]
  10. U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
    [CrossRef]
  11. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [CrossRef] [PubMed]
  12. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M.S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multimode fiber using swept-wavelengh interferometry,” Optical Fiber Sensors, ThE42 (2006).
  13. A. K. Sang, M. E. Froggatt, D. K. Grifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
    [CrossRef]
  14. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt. 37(10), 1735–1740 (1998).
    [CrossRef] [PubMed]
  15. R. R. J. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. S. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
    [CrossRef]
  16. T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett., 37 (to be published).
  17. D. Coric, R. Chatton, H. G. Limberger, and R. P. Salathe, “High resolution liquid-level sensor based on fiber Bragg-gratings in attenuation fiber and optical low-coherence reflectometry,” in Optical Fiber Sensors, 2006, Mexico.
  18. D. Coric, R. Chatton, Y. Luchessa, H. G. Limberger, R. Salathe, and F. Caloz, “Light-controlled reconfigurable fiber Bragg grating written in attenation fiber,” in National Fiber Optic Engineers Conference, 2007, paper JWA17.
  19. T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
    [CrossRef]
  20. F. Ye, T. Chen, D. Xu, K. P. Chen, B. Qi, and L. Qian, “Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry,” Appl. Opt. 49(26), 4898–4905 (2010).
    [CrossRef] [PubMed]
  21. T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J, 11, 1051 (2011).
  22. M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
    [CrossRef]

2011 (3)

2010 (3)

R. R. J. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. S. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[CrossRef]

F. Ye, T. Chen, D. Xu, K. P. Chen, B. Qi, and L. Qian, “Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry,” Appl. Opt. 49(26), 4898–4905 (2010).
[CrossRef] [PubMed]

2009 (2)

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

Y-H. Wang, C-P. Chen, C-M. Chang, C-P. Lin, C-H. Lin, L-M. Fu, and C-Y. Lee, “MEMS-based flow sensors,” Microfluid Nanofluid 6(3), 333–346 (2009).
[CrossRef]

2008 (1)

A. K. Sang, M. E. Froggatt, D. K. Grifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

2007 (1)

2006 (1)

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sen. Actuators A Phys. 127(1), 63–68 (2006).

2005 (2)

2001 (1)

G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fibre optic reference beam laser Doppler anemometer,” Meas. Sci. Technol. 12(7), 909–913 (2001).

1998 (1)

1993 (1)

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[CrossRef]

1981 (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[CrossRef]

Araújo, F.

Araújo, F. M.

Barton, J. S.

R. R. J. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. S. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

Brinkmeyer, E.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[CrossRef]

Buric, M.

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[CrossRef]

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

Byrne, G. D.

G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fibre optic reference beam laser Doppler anemometer,” Meas. Sci. Technol. 12(7), 909–913 (2001).

Caldas, P.

Cashdollar, L. J.

L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5(6), 1327–1331 (2005).
[CrossRef]

Chang, C-M.

Y-H. Wang, C-P. Chen, C-M. Chang, C-P. Lin, C-H. Lin, L-M. Fu, and C-Y. Lee, “MEMS-based flow sensors,” Microfluid Nanofluid 6(3), 333–346 (2009).
[CrossRef]

Chen, C-P.

Y-H. Wang, C-P. Chen, C-M. Chang, C-P. Lin, C-H. Lin, L-M. Fu, and C-Y. Lee, “MEMS-based flow sensors,” Microfluid Nanofluid 6(3), 333–346 (2009).
[CrossRef]

Chen, K. P.

T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J, 11, 1051 (2011).

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[CrossRef]

F. Ye, T. Chen, D. Xu, K. P. Chen, B. Qi, and L. Qian, “Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry,” Appl. Opt. 49(26), 4898–4905 (2010).
[CrossRef] [PubMed]

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sen. Actuators A Phys. 127(1), 63–68 (2006).

L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5(6), 1327–1331 (2005).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett., 37 (to be published).

Chen, R.

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett., 37 (to be published).

Chen, T.

T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J, 11, 1051 (2011).

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[CrossRef]

F. Ye, T. Chen, D. Xu, K. P. Chen, B. Qi, and L. Qian, “Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry,” Appl. Opt. 49(26), 4898–4905 (2010).
[CrossRef] [PubMed]

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett., 37 (to be published).

Cho, L. H.

Cho, S. K.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sen. Actuators A Phys. 127(1), 63–68 (2006).

Dickerson, B. D.

A. K. Sang, M. E. Froggatt, D. K. Grifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[CrossRef]

Ferreira, L. A.

Frazão, O.

Froggatt, M.

Froggatt, M. E.

A. K. Sang, M. E. Froggatt, D. K. Grifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

Fu, L-M.

Y-H. Wang, C-P. Chen, C-M. Chang, C-P. Lin, C-H. Lin, L-M. Fu, and C-Y. Lee, “MEMS-based flow sensors,” Microfluid Nanofluid 6(3), 333–346 (2009).
[CrossRef]

Gao, S.

Gifford, D.

Glombitza, U.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[CrossRef]

Grifford, D. K.

A. K. Sang, M. E. Froggatt, D. K. Grifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

James, S. W.

G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fibre optic reference beam laser Doppler anemometer,” Meas. Sci. Technol. 12(7), 909–913 (2001).

Jewart, C.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sen. Actuators A Phys. 127(1), 63–68 (2006).

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett., 37 (to be published).

Jones, B. J. S.

R. R. J. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. S. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

Jorge, P. A. S.

Kreger, S. T.

A. K. Sang, M. E. Froggatt, D. K. Grifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

Lee, C-Y.

Y-H. Wang, C-P. Chen, C-M. Chang, C-P. Lin, C-H. Lin, L-M. Fu, and C-Y. Lee, “MEMS-based flow sensors,” Microfluid Nanofluid 6(3), 333–346 (2009).
[CrossRef]

Lin, C-H.

Y-H. Wang, C-P. Chen, C-M. Chang, C-P. Lin, C-H. Lin, L-M. Fu, and C-Y. Lee, “MEMS-based flow sensors,” Microfluid Nanofluid 6(3), 333–346 (2009).
[CrossRef]

Lin, C-P.

Y-H. Wang, C-P. Chen, C-M. Chang, C-P. Lin, C-H. Lin, L-M. Fu, and C-Y. Lee, “MEMS-based flow sensors,” Microfluid Nanofluid 6(3), 333–346 (2009).
[CrossRef]

Lu, C.

MacPherson, W. N.

R. R. J. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. S. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

Maier, R. R. J.

R. R. J. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. S. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

Maklad, M.

T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J, 11, 1051 (2011).

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[CrossRef]

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett., 37 (to be published).

McCulloch, S.

R. R. J. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. S. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

McMillen, B.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sen. Actuators A Phys. 127(1), 63–68 (2006).

Moore, J.

Qi, B.

Qian, L.

Rego, G.

Sang, A. K.

A. K. Sang, M. E. Froggatt, D. K. Grifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

Santos, J. L.

Soller, B.

Swinehart, P. R.

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett., 37 (to be published).

Swinhart, P. R.

T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J, 11, 1051 (2011).

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[CrossRef]

Tam, H. Y.

Tatam, R. P.

G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fibre optic reference beam laser Doppler anemometer,” Meas. Sci. Technol. 12(7), 909–913 (2001).

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[CrossRef]

Wang, Q.

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett., 37 (to be published).

Wang, Y-H.

Y-H. Wang, C-P. Chen, C-M. Chang, C-P. Lin, C-H. Lin, L-M. Fu, and C-Y. Lee, “MEMS-based flow sensors,” Microfluid Nanofluid 6(3), 333–346 (2009).
[CrossRef]

Wolfe, M.

Xu, D.

F. Ye, T. Chen, D. Xu, K. P. Chen, B. Qi, and L. Qian, “Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry,” Appl. Opt. 49(26), 4898–4905 (2010).
[CrossRef] [PubMed]

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[CrossRef]

Ye, F.

Zhang, A. P.

Zhang, B.

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett., 37 (to be published).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

IEEE Sens. J, (1)

T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J, 11, 1051 (2011).

IEEE Sens. J. (2)

A. K. Sang, M. E. Froggatt, D. K. Grifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[CrossRef]

L. J. Cashdollar and K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sens. J. 5(6), 1327–1331 (2005).
[CrossRef]

J. Lightwave Technol. (1)

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[CrossRef]

Meas. Sci. Technol. (3)

R. R. J. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. S. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[CrossRef]

G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fibre optic reference beam laser Doppler anemometer,” Meas. Sci. Technol. 12(7), 909–913 (2001).

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21(9), 094036 (2010).
[CrossRef]

Microfluid Nanofluid (1)

Y-H. Wang, C-P. Chen, C-M. Chang, C-P. Lin, C-H. Lin, L-M. Fu, and C-Y. Lee, “MEMS-based flow sensors,” Microfluid Nanofluid 6(3), 333–346 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Sen. Actuators A Phys. (1)

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sen. Actuators A Phys. 127(1), 63–68 (2006).

Other (5)

H. H. Bruun, Hot-Wire Anemometry: Principles and Signal Analysis (Oxford University Press, 1995), Chap. 2.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M.S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multimode fiber using swept-wavelengh interferometry,” Optical Fiber Sensors, ThE42 (2006).

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett., 37 (to be published).

D. Coric, R. Chatton, H. G. Limberger, and R. P. Salathe, “High resolution liquid-level sensor based on fiber Bragg-gratings in attenuation fiber and optical low-coherence reflectometry,” in Optical Fiber Sensors, 2006, Mexico.

D. Coric, R. Chatton, Y. Luchessa, H. G. Limberger, R. Salathe, and F. Caloz, “Light-controlled reconfigurable fiber Bragg grating written in attenation fiber,” in National Fiber Optic Engineers Conference, 2007, paper JWA17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The schematic of in-fiber Rayleigh scattering measurement for flow sensing using OFDR and electrically heated fiber.

Fig. 2
Fig. 2

(a) The heating profiles along the FUT for different input power, derived from the cross-correlation between unheated and heated Rayleigh spectra; Inset: unheated and 0.22W heated Rayleigh spectra (b) The heating efficiency vs. input power density, values obtained at fiber length of 3470mm in 2a; (c) The temperature dependence of resistance.

Fig. 3
Fig. 3

(Color Online) The heat loss profiles and sensor responses of (a) flow rate measurement; (b) flow transverse position measurement; (c) flow direction measurement (d) two gas flows measured simultaneously.

Fig. 4
Fig. 4

(a) The schematic and (b) the picture and (c) the flow response of a 4-layer fiber hot-wire grid with 15 HWA sections; (d, e) The calibration curve of flow rate with longitudinal movements and angle tilting; (f, g) The comparison between measured and actual values of flow rate, positions and angles.

Fig. 5
Fig. 5

(a) The schematic of flow sensing using OFDR and optical on-fiber heating; (b) Proposed setup for optically heated HWA grid; (c) The temperature profile and heating efficiency (Inset) for optical heating using 0.05dB/mm-loss HAF; (d) The flow sensor response and rate dependence (inset) using optical on-fiber heating.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I beat ( ω )=2 E ref ( t ) E meas ( tτ )ρ( ω )cos[ωτϕ]
I( τ )=I( n f x )=FFT[ I beat ( ω )]
L max = c τ sampling / 4n ,ΔL= πc / nΔ ω sweep
I measure ( ω ) I ref * ( ω )=FFT[ I measure ( τ ) I ref * ( τ ) ]
K T ΔT= Δλ /λ = Δν /ν
Δ L cc ( Δλ /λ )=ΔL( K T ΔT )=λ/ 4n
H loss =ΔT( A+B v )
θ x =arctan[ ( Δ x back Δ x front ) /d ]

Metrics