Abstract

A systematic investigation has been carried out to study the influence of various annealings and implantations on the photoluminescence (PL) properties of phosphorus (P)-implanted Ge epitaxial films on Si substrate. For un-capped Ge samples, rapid thermal annealing (RTA) at 700 °C for 300 seconds yields the strongest PL emission peaked at 1550 nm. The influence of employing various capping layers (i.e., SiO2, Si3N4, and α-Si) on the PL properties has been investigated. The capping layers are found to effectively decrease the dopant loss, leading to a significant PL enhancement. Si3N4 is found to be the most efficient capping layer to prevent dopant out-diffusion and thus lead to strongest PL. Furthermore, it has been found that capping layers not only enhance the PL intensities but also make PL emission peak red- and blue- shift, depending on the stress type of the capping films. The effect of implantation dose on the PL has been also investigated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Chen, P. Dong, and M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 (2008).
    [CrossRef] [PubMed]
  2. K.-W. Ang, M.-B. Yu, S.-Y. Zhu, K.-T. Chua, G.-Q. Lo, and D.-L. Kwong, “Novel NiGe MSM photodetector featuring asymmetrical Schottky barriers using sulfur Co-implantation and segregation,” IEEE Electron Device Lett. 29(7), 708–711 (2008).
    [CrossRef]
  3. K.-W. Ang, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Low voltage and high responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
    [CrossRef]
  4. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
    [CrossRef] [PubMed]
  5. X. Sun, J. Liu, L. C. Kimerling, J. Michel, and T. L. Koch, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
    [CrossRef]
  6. J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Towards a Ge-based laser for CMOS applications,” in Proceedings of 5th IEEE International. Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, Italy, 2008), pp. 16–18.
  7. M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
    [CrossRef]
  8. T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
    [CrossRef]
  9. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
    [CrossRef] [PubMed]
  10. S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
    [CrossRef] [PubMed]
  11. C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, “Activation and diffusion studies of ion-implanted p and n dopants in germanium,” Appl. Phys. Lett. 83(16), 3275–3277 (2003).
    [CrossRef]
  12. C. O. Chui, L. Kulig, J. Moran, W. Tsai, and K. C. Saraswat, “Germanium n-type shallow junction activation dependences,” Appl. Phys. Lett. 87(9), 091909 (2005).
    [CrossRef]
  13. C. H. Poon, L. S. Tan, B. J. Cho, and A. Y. Du, “Dopant loss mechanism in n+/p germanium junctions during rapid thermal annealing,” J. Electrochem. Soc. 152(12), G895–G899 (2005).
    [CrossRef]
  14. A. Chroneos, D. Skarlatos, C. Tsamis, A. Christofi, D. S. McPhail, and R. Hung, “Implantation and diffusion of phosphorous in germanium,” Mater. Sci. Semicond. Process. 9(4-5), 640–643 (2006).
    [CrossRef]
  15. T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. Q. Lo, N. Balasubramanian, D. L. Kwong, and S. Tripathy, “Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 90(9), 092108 (2007).
    [CrossRef]
  16. G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menendez, “Direct versus indirect optical recombination in Ge films grown on Si substrate,” Phys. Rev. B 84(20), 205307 (2011).
    [CrossRef]
  17. D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications,” Appl. Phys. Lett. 84(6), 906–908 (2004).
    [CrossRef]
  18. F. Cerdeira, C. Buchenauer, F. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond- and Zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
    [CrossRef]
  19. S. S. Mitra and N. E. Massa, Handbook of Semiconductors, T. S. Moss ed. (North-Holland, 1986) Vol. 1, p. 96.
  20. J. Joo, S. Kim, I. G. Kim, K. S. Jang, and G. Kim, “High-sensitivity 10 Gbps Ge-on-Si photoreceiver operating at lambda approximately 1.55 microm,” Opt. Express 18(16), 16474–16479 (2010).
    [CrossRef] [PubMed]
  21. S. M. Sze and J. C. Irvin, “Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 °K,” Solid-State Electron. 11(6), 599–602 (1968).
    [CrossRef]
  22. M. El Jurdi, M. de Kersauson, D. David, X. Checoury, G. Beaudoin, R. Jakomin, I. Sagnes, S. Sauvage, G. Fishman, and P. Boucaud, “Stimulated emission in single tensile-strained Ge photonic wire,” in Proceedings of 8th IEEE International. Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, England, 2011), pp. ThC8.

2011 (1)

G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menendez, “Direct versus indirect optical recombination in Ge films grown on Si substrate,” Phys. Rev. B 84(20), 205307 (2011).
[CrossRef]

2010 (2)

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

J. Joo, S. Kim, I. G. Kim, K. S. Jang, and G. Kim, “High-sensitivity 10 Gbps Ge-on-Si photoreceiver operating at lambda approximately 1.55 microm,” Opt. Express 18(16), 16474–16479 (2010).
[CrossRef] [PubMed]

2009 (4)

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
[CrossRef] [PubMed]

S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[CrossRef] [PubMed]

X. Sun, J. Liu, L. C. Kimerling, J. Michel, and T. L. Koch, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[CrossRef]

M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[CrossRef]

2008 (3)

L. Chen, P. Dong, and M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 (2008).
[CrossRef] [PubMed]

K.-W. Ang, M.-B. Yu, S.-Y. Zhu, K.-T. Chua, G.-Q. Lo, and D.-L. Kwong, “Novel NiGe MSM photodetector featuring asymmetrical Schottky barriers using sulfur Co-implantation and segregation,” IEEE Electron Device Lett. 29(7), 708–711 (2008).
[CrossRef]

K.-W. Ang, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Low voltage and high responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
[CrossRef]

2007 (2)

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[CrossRef] [PubMed]

T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. Q. Lo, N. Balasubramanian, D. L. Kwong, and S. Tripathy, “Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 90(9), 092108 (2007).
[CrossRef]

2006 (1)

A. Chroneos, D. Skarlatos, C. Tsamis, A. Christofi, D. S. McPhail, and R. Hung, “Implantation and diffusion of phosphorous in germanium,” Mater. Sci. Semicond. Process. 9(4-5), 640–643 (2006).
[CrossRef]

2005 (2)

C. O. Chui, L. Kulig, J. Moran, W. Tsai, and K. C. Saraswat, “Germanium n-type shallow junction activation dependences,” Appl. Phys. Lett. 87(9), 091909 (2005).
[CrossRef]

C. H. Poon, L. S. Tan, B. J. Cho, and A. Y. Du, “Dopant loss mechanism in n+/p germanium junctions during rapid thermal annealing,” J. Electrochem. Soc. 152(12), G895–G899 (2005).
[CrossRef]

2004 (1)

D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications,” Appl. Phys. Lett. 84(6), 906–908 (2004).
[CrossRef]

2003 (1)

C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, “Activation and diffusion studies of ion-implanted p and n dopants in germanium,” Appl. Phys. Lett. 83(16), 3275–3277 (2003).
[CrossRef]

1972 (1)

F. Cerdeira, C. Buchenauer, F. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond- and Zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
[CrossRef]

1968 (1)

S. M. Sze and J. C. Irvin, “Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 °K,” Solid-State Electron. 11(6), 599–602 (1968).
[CrossRef]

Ang, K.-W.

K.-W. Ang, M.-B. Yu, S.-Y. Zhu, K.-T. Chua, G.-Q. Lo, and D.-L. Kwong, “Novel NiGe MSM photodetector featuring asymmetrical Schottky barriers using sulfur Co-implantation and segregation,” IEEE Electron Device Lett. 29(7), 708–711 (2008).
[CrossRef]

K.-W. Ang, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Low voltage and high responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
[CrossRef]

Balasubramanian, N.

T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. Q. Lo, N. Balasubramanian, D. L. Kwong, and S. Tripathy, “Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 90(9), 092108 (2007).
[CrossRef]

Beeler, R. T.

G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menendez, “Direct versus indirect optical recombination in Ge films grown on Si substrate,” Phys. Rev. B 84(20), 205307 (2011).
[CrossRef]

Bensahel, D.

M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[CrossRef]

Boucaud, P.

M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[CrossRef]

Boulmer, J.

M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[CrossRef]

Buchenauer, C.

F. Cerdeira, C. Buchenauer, F. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond- and Zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
[CrossRef]

Cannon, D. D.

D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications,” Appl. Phys. Lett. 84(6), 906–908 (2004).
[CrossRef]

Cardona, M.

F. Cerdeira, C. Buchenauer, F. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond- and Zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
[CrossRef]

Cerdeira, F.

F. Cerdeira, C. Buchenauer, F. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond- and Zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
[CrossRef]

Chen, C.-Y.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Chen, L.

Cheng, S.-L.

Cheng, T.-H.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Cho, B. J.

C. H. Poon, L. S. Tan, B. J. Cho, and A. Y. Du, “Dopant loss mechanism in n+/p germanium junctions during rapid thermal annealing,” J. Electrochem. Soc. 152(12), G895–G899 (2005).
[CrossRef]

Christofi, A.

A. Chroneos, D. Skarlatos, C. Tsamis, A. Christofi, D. S. McPhail, and R. Hung, “Implantation and diffusion of phosphorous in germanium,” Mater. Sci. Semicond. Process. 9(4-5), 640–643 (2006).
[CrossRef]

Chroneos, A.

A. Chroneos, D. Skarlatos, C. Tsamis, A. Christofi, D. S. McPhail, and R. Hung, “Implantation and diffusion of phosphorous in germanium,” Mater. Sci. Semicond. Process. 9(4-5), 640–643 (2006).
[CrossRef]

Chua, K.-T.

K.-W. Ang, M.-B. Yu, S.-Y. Zhu, K.-T. Chua, G.-Q. Lo, and D.-L. Kwong, “Novel NiGe MSM photodetector featuring asymmetrical Schottky barriers using sulfur Co-implantation and segregation,” IEEE Electron Device Lett. 29(7), 708–711 (2008).
[CrossRef]

Chui, C. O.

C. O. Chui, L. Kulig, J. Moran, W. Tsai, and K. C. Saraswat, “Germanium n-type shallow junction activation dependences,” Appl. Phys. Lett. 87(9), 091909 (2005).
[CrossRef]

C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, “Activation and diffusion studies of ion-implanted p and n dopants in germanium,” Appl. Phys. Lett. 83(16), 3275–3277 (2003).
[CrossRef]

Damlencourt, J. F.

M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[CrossRef]

Danielson, D. T.

D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications,” Appl. Phys. Lett. 84(6), 906–908 (2004).
[CrossRef]

Débarre, D.

M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[CrossRef]

Dong, P.

Du, A. Y.

C. H. Poon, L. S. Tan, B. J. Cho, and A. Y. Du, “Dopant loss mechanism in n+/p germanium junctions during rapid thermal annealing,” J. Electrochem. Soc. 152(12), G895–G899 (2005).
[CrossRef]

El Kurdi, M.

M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[CrossRef]

Gopalakrishnan, K.

C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, “Activation and diffusion studies of ion-implanted p and n dopants in germanium,” Appl. Phys. Lett. 83(16), 3275–3277 (2003).
[CrossRef]

Griffin, P. B.

C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, “Activation and diffusion studies of ion-implanted p and n dopants in germanium,” Appl. Phys. Lett. 83(16), 3275–3277 (2003).
[CrossRef]

Grzybowski, G.

G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menendez, “Direct versus indirect optical recombination in Ge films grown on Si substrate,” Phys. Rev. B 84(20), 205307 (2011).
[CrossRef]

Hung, R.

A. Chroneos, D. Skarlatos, C. Tsamis, A. Christofi, D. S. McPhail, and R. Hung, “Implantation and diffusion of phosphorous in germanium,” Mater. Sci. Semicond. Process. 9(4-5), 640–643 (2006).
[CrossRef]

Irvin, J. C.

S. M. Sze and J. C. Irvin, “Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 °K,” Solid-State Electron. 11(6), 599–602 (1968).
[CrossRef]

Ishikawa, Y.

D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications,” Appl. Phys. Lett. 84(6), 906–908 (2004).
[CrossRef]

Jang, K. S.

Jiang, L.

G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menendez, “Direct versus indirect optical recombination in Ge films grown on Si substrate,” Phys. Rev. B 84(20), 205307 (2011).
[CrossRef]

Jongthammanurak, S.

D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications,” Appl. Phys. Lett. 84(6), 906–908 (2004).
[CrossRef]

Joo, J.

Kermarrec, O.

M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[CrossRef]

Kim, G.

Kim, I. G.

Kim, S.

Kimerling, L. C.

X. Sun, J. Liu, L. C. Kimerling, J. Michel, and T. L. Koch, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[CrossRef]

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
[CrossRef] [PubMed]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[CrossRef] [PubMed]

D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications,” Appl. Phys. Lett. 84(6), 906–908 (2004).
[CrossRef]

Ko, C.-Y.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Koch, T. L.

X. Sun, J. Liu, L. C. Kimerling, J. Michel, and T. L. Koch, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[CrossRef]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[CrossRef] [PubMed]

Kociniewski, T.

M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[CrossRef]

Kouvetakis, J.

G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menendez, “Direct versus indirect optical recombination in Ge films grown on Si substrate,” Phys. Rev. B 84(20), 205307 (2011).
[CrossRef]

Kulig, L.

C. O. Chui, L. Kulig, J. Moran, W. Tsai, and K. C. Saraswat, “Germanium n-type shallow junction activation dependences,” Appl. Phys. Lett. 87(9), 091909 (2005).
[CrossRef]

Kwong, D. L.

T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. Q. Lo, N. Balasubramanian, D. L. Kwong, and S. Tripathy, “Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 90(9), 092108 (2007).
[CrossRef]

Kwong, D.-L.

K.-W. Ang, M.-B. Yu, S.-Y. Zhu, K.-T. Chua, G.-Q. Lo, and D.-L. Kwong, “Novel NiGe MSM photodetector featuring asymmetrical Schottky barriers using sulfur Co-implantation and segregation,” IEEE Electron Device Lett. 29(7), 708–711 (2008).
[CrossRef]

K.-W. Ang, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Low voltage and high responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
[CrossRef]

Lan, H.-S.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Lipson, M.

Liu, C. W.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Liu, J.

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
[CrossRef] [PubMed]

X. Sun, J. Liu, L. C. Kimerling, J. Michel, and T. L. Koch, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[CrossRef]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[CrossRef] [PubMed]

D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications,” Appl. Phys. Lett. 84(6), 906–908 (2004).
[CrossRef]

Lo, G. Q.

T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. Q. Lo, N. Balasubramanian, D. L. Kwong, and S. Tripathy, “Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 90(9), 092108 (2007).
[CrossRef]

Lo, G.-Q.

K.-W. Ang, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Low voltage and high responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
[CrossRef]

K.-W. Ang, M.-B. Yu, S.-Y. Zhu, K.-T. Chua, G.-Q. Lo, and D.-L. Kwong, “Novel NiGe MSM photodetector featuring asymmetrical Schottky barriers using sulfur Co-implantation and segregation,” IEEE Electron Device Lett. 29(7), 708–711 (2008).
[CrossRef]

Loh, T. H.

T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. Q. Lo, N. Balasubramanian, D. L. Kwong, and S. Tripathy, “Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 90(9), 092108 (2007).
[CrossRef]

Lu, J.

Mathews, J.

G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menendez, “Direct versus indirect optical recombination in Ge films grown on Si substrate,” Phys. Rev. B 84(20), 205307 (2011).
[CrossRef]

McPhail, D. S.

A. Chroneos, D. Skarlatos, C. Tsamis, A. Christofi, D. S. McPhail, and R. Hung, “Implantation and diffusion of phosphorous in germanium,” Mater. Sci. Semicond. Process. 9(4-5), 640–643 (2006).
[CrossRef]

Menendez, J.

G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menendez, “Direct versus indirect optical recombination in Ge films grown on Si substrate,” Phys. Rev. B 84(20), 205307 (2011).
[CrossRef]

Michel, J.

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
[CrossRef] [PubMed]

X. Sun, J. Liu, L. C. Kimerling, J. Michel, and T. L. Koch, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[CrossRef]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[CrossRef] [PubMed]

D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications,” Appl. Phys. Lett. 84(6), 906–908 (2004).
[CrossRef]

Moran, J.

C. O. Chui, L. Kulig, J. Moran, W. Tsai, and K. C. Saraswat, “Germanium n-type shallow junction activation dependences,” Appl. Phys. Lett. 87(9), 091909 (2005).
[CrossRef]

Ngo, T.-P.

M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[CrossRef]

Nguyen, H. S.

T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. Q. Lo, N. Balasubramanian, D. L. Kwong, and S. Tripathy, “Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 90(9), 092108 (2007).
[CrossRef]

Nishi, Y.

Pan, D.

Peng, K.-L.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Plummer, J. D.

C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, “Activation and diffusion studies of ion-implanted p and n dopants in germanium,” Appl. Phys. Lett. 83(16), 3275–3277 (2003).
[CrossRef]

Pollak, F.

F. Cerdeira, C. Buchenauer, F. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond- and Zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
[CrossRef]

Poon, C. H.

C. H. Poon, L. S. Tan, B. J. Cho, and A. Y. Du, “Dopant loss mechanism in n+/p germanium junctions during rapid thermal annealing,” J. Electrochem. Soc. 152(12), G895–G899 (2005).
[CrossRef]

Roucka, R.

G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menendez, “Direct versus indirect optical recombination in Ge films grown on Si substrate,” Phys. Rev. B 84(20), 205307 (2011).
[CrossRef]

Saraswat, K.

Saraswat, K. C.

C. O. Chui, L. Kulig, J. Moran, W. Tsai, and K. C. Saraswat, “Germanium n-type shallow junction activation dependences,” Appl. Phys. Lett. 87(9), 091909 (2005).
[CrossRef]

C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, “Activation and diffusion studies of ion-implanted p and n dopants in germanium,” Appl. Phys. Lett. 83(16), 3275–3277 (2003).
[CrossRef]

Shambat, G.

Skarlatos, D.

A. Chroneos, D. Skarlatos, C. Tsamis, A. Christofi, D. S. McPhail, and R. Hung, “Implantation and diffusion of phosphorous in germanium,” Mater. Sci. Semicond. Process. 9(4-5), 640–643 (2006).
[CrossRef]

Sun, X.

Sze, S. M.

S. M. Sze and J. C. Irvin, “Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 °K,” Solid-State Electron. 11(6), 599–602 (1968).
[CrossRef]

Tan, L. S.

C. H. Poon, L. S. Tan, B. J. Cho, and A. Y. Du, “Dopant loss mechanism in n+/p germanium junctions during rapid thermal annealing,” J. Electrochem. Soc. 152(12), G895–G899 (2005).
[CrossRef]

Trigg, A. D.

T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. Q. Lo, N. Balasubramanian, D. L. Kwong, and S. Tripathy, “Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 90(9), 092108 (2007).
[CrossRef]

Tripathy, S.

T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. Q. Lo, N. Balasubramanian, D. L. Kwong, and S. Tripathy, “Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 90(9), 092108 (2007).
[CrossRef]

Tsai, W.

C. O. Chui, L. Kulig, J. Moran, W. Tsai, and K. C. Saraswat, “Germanium n-type shallow junction activation dependences,” Appl. Phys. Lett. 87(9), 091909 (2005).
[CrossRef]

Tsamis, C.

A. Chroneos, D. Skarlatos, C. Tsamis, A. Christofi, D. S. McPhail, and R. Hung, “Implantation and diffusion of phosphorous in germanium,” Mater. Sci. Semicond. Process. 9(4-5), 640–643 (2006).
[CrossRef]

Tseng, H.-H.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Tung, C. H.

T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. Q. Lo, N. Balasubramanian, D. L. Kwong, and S. Tripathy, “Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 90(9), 092108 (2007).
[CrossRef]

Vuckovic, J.

Wada, K.

D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications,” Appl. Phys. Lett. 84(6), 906–908 (2004).
[CrossRef]

Wang, X.

Wu, Y.-R.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Yu, H.-Y.

Yu, M.-B.

K.-W. Ang, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Low voltage and high responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
[CrossRef]

K.-W. Ang, M.-B. Yu, S.-Y. Zhu, K.-T. Chua, G.-Q. Lo, and D.-L. Kwong, “Novel NiGe MSM photodetector featuring asymmetrical Schottky barriers using sulfur Co-implantation and segregation,” IEEE Electron Device Lett. 29(7), 708–711 (2008).
[CrossRef]

Zhu, S.-Y.

K.-W. Ang, M.-B. Yu, S.-Y. Zhu, K.-T. Chua, G.-Q. Lo, and D.-L. Kwong, “Novel NiGe MSM photodetector featuring asymmetrical Schottky barriers using sulfur Co-implantation and segregation,” IEEE Electron Device Lett. 29(7), 708–711 (2008).
[CrossRef]

Appl. Phys. Lett. (7)

X. Sun, J. Liu, L. C. Kimerling, J. Michel, and T. L. Koch, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[CrossRef]

M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[CrossRef]

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, “Activation and diffusion studies of ion-implanted p and n dopants in germanium,” Appl. Phys. Lett. 83(16), 3275–3277 (2003).
[CrossRef]

C. O. Chui, L. Kulig, J. Moran, W. Tsai, and K. C. Saraswat, “Germanium n-type shallow junction activation dependences,” Appl. Phys. Lett. 87(9), 091909 (2005).
[CrossRef]

T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. Q. Lo, N. Balasubramanian, D. L. Kwong, and S. Tripathy, “Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett. 90(9), 092108 (2007).
[CrossRef]

D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications,” Appl. Phys. Lett. 84(6), 906–908 (2004).
[CrossRef]

IEEE Electron Device Lett. (2)

K.-W. Ang, M.-B. Yu, S.-Y. Zhu, K.-T. Chua, G.-Q. Lo, and D.-L. Kwong, “Novel NiGe MSM photodetector featuring asymmetrical Schottky barriers using sulfur Co-implantation and segregation,” IEEE Electron Device Lett. 29(7), 708–711 (2008).
[CrossRef]

K.-W. Ang, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Low voltage and high responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
[CrossRef]

J. Electrochem. Soc. (1)

C. H. Poon, L. S. Tan, B. J. Cho, and A. Y. Du, “Dopant loss mechanism in n+/p germanium junctions during rapid thermal annealing,” J. Electrochem. Soc. 152(12), G895–G899 (2005).
[CrossRef]

Mater. Sci. Semicond. Process. (1)

A. Chroneos, D. Skarlatos, C. Tsamis, A. Christofi, D. S. McPhail, and R. Hung, “Implantation and diffusion of phosphorous in germanium,” Mater. Sci. Semicond. Process. 9(4-5), 640–643 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (2)

F. Cerdeira, C. Buchenauer, F. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond- and Zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
[CrossRef]

G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menendez, “Direct versus indirect optical recombination in Ge films grown on Si substrate,” Phys. Rev. B 84(20), 205307 (2011).
[CrossRef]

Solid-State Electron. (1)

S. M. Sze and J. C. Irvin, “Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 °K,” Solid-State Electron. 11(6), 599–602 (1968).
[CrossRef]

Other (3)

M. El Jurdi, M. de Kersauson, D. David, X. Checoury, G. Beaudoin, R. Jakomin, I. Sagnes, S. Sauvage, G. Fishman, and P. Boucaud, “Stimulated emission in single tensile-strained Ge photonic wire,” in Proceedings of 8th IEEE International. Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, England, 2011), pp. ThC8.

S. S. Mitra and N. E. Massa, Handbook of Semiconductors, T. S. Moss ed. (North-Holland, 1986) Vol. 1, p. 96.

J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Towards a Ge-based laser for CMOS applications,” in Proceedings of 5th IEEE International. Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, Italy, 2008), pp. 16–18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Surface AFM image of as-grown Ge film on Si; (b) cross-sectional TEM image of as-grown Ge film; (c) cross-sectional TEM image of as-implanted Ge film; (d) cross-sectional TEM image of P-implanted Ge film annealing at 700 °C for 5 min with 100-nm-SiO2 capping layer.

Fig. 2
Fig. 2

Raman spectra of as-grown, as-implanted, and annealed P-implanted Ge epitaxial films on Si. The samples were annealed from 500 °C to 800 °C for a fixed duration of 5 min without a capping layer.

Fig. 3
Fig. 3

(a) high resolution Raman spectra of P-implanted Ge epi-film with various annealings; (b) in-plane tensile strain in the epitaxial Ge film as the function of annealing temperature.

Fig. 4
Fig. 4

Sheet resistance of P+-implanted Ge epi-film without a capping layer as functions of (a) annealing temperature for a fixed duration of 300 sec; and (b) annealing time at a fixed temperature of 700 °C.

Fig. 5
Fig. 5

(a) PL spectra for the P+-implanted Ge epi-films annealed at various temperatures for a fixed duration of 300 seconds. The inset shows the PL peak intensity as a function of annealing temperature. (b) PL spectra for the P+-implanted Ge epi-films annealed for various durations at a fixed temperature of 700 °C. The inset shows the PL peak intensity as a function of annealing time.

Fig. 6
Fig. 6

Comparison among P profiles in P-implanted Ge annealed with various capping layers, i.e., SiO2, α-Si, and Si3N4. P profiles of the as-implanted sample and the sample annealed without capping layer are also shown in the figure. All the samples were annealed with the same condition, i.e., at 700 oC for 300 seconds.

Fig. 7
Fig. 7

(a) Sheet resistance of P+-implanted Ge epi-films as a function of annealing temperature for the samples capped with various capping layers. (b) Sheet resistance of P+-implanted Ge epi-films as a function of annealing time for the samples capped with various capping layers.

Fig. 8
Fig. 8

Directly measured PL spectra (a) and PL spectra after correction to the reflectance of pumping laser and light-out extraction efficiency of the P+-implanted Ge samples annealed with various capping layers. All samples were annealed at 700 °C for 300 seconds.

Fig. 9
Fig. 9

High resolution Raman spectra of P-implanted Ge epi-film with various capping layers. All samples were annealed at 700 °C for 300 seconds.

Fig. 10
Fig. 10

PL spectra of the samples with various implantation doses.

Fig. 11
Fig. 11

PL spectra of the samples annealed without any capping layer, annealed with Si3N4 capping layer, and after Si3N4 etching and α-Si deposition.

Tables (1)

Tables Icon

Table 1 Fractions of Out-Diffused Ions, Unactivated Ions, and Activated Ions for the Samples Annealed with Various Capping Layers (i.e., SiO2, α-Si, and Si3N4)

Metrics