Abstract

We demonstrate optical true time delays using wavelength conversion coupled with chromatic dispersion. The transfer function of the delay system is investigated, and it is shown that 3-dB bandwidth of the system can be increased over 40 GHz by using offset pumps. A flat magnitude response (<1 dB peak-peak, 0.2 dB RMS deviation) is achieved in the 1-30 GHz band. Calculated matched filter output to LFM pulses shows good performance, maintaining a > 30 dB peak-to-sidelobe-ratio. The effect of pump depletion during wavelength conversion is also investigated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Willaims, “Microwave photonics,” Optical Fiber Communications Conference, Los Angeles, CA, SC160 (2011).
  2. J. Capmany, J. Sancho, J. Lloret, I. Gasulla, and S. Sales, “Tunable phase-shift and true time delays using slow light techniques and devices,” European Conference on Optical Communications (ECOC), Torino, Italy, WS9 (2010).
  3. M. Skolnik, Radar Handbook (McGraw-Hill, 1990).
  4. R. Rotman, O. Raz, and M. Tur, “Analysis of a true time delay photonic beamformer for transmission of a linear frequency modulated waveform,” J. Lightwave Technol.23(12), 4026–4036 (2005).
    [CrossRef]
  5. S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, “Optical multibeamforming network based on WDM and dispersion fiber in receive mode,” IEEE Trans. Microw. Theory Tech.54(1), 402–411 (2006).
    [CrossRef]
  6. L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
    [CrossRef]
  7. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett.5(11), 1347–1349 (1993).
    [CrossRef]
  8. W. Ng, D. Yap, A. Narayanan, and A. Walston, “High-precision detector-switched monolithic GaAs time-delay network for the optical control of phased arrays,” IEEE Photon. Technol. Lett.6(2), 231–234 (1994).
    [CrossRef]
  9. J. L. Cruz, B. Ortega, M. V. Andrés, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett.33(7), 545–546 (1997).
    [CrossRef]
  10. M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett.20(5), 375–377 (2008).
    [CrossRef]
  11. O. Raz, R. Rotman, Y. Danziger, and M. Tur, “Implementation of photonic true time delay using high-order-mode dispersion compensating fibers,” IEEE Photon. Technol. Lett.16(5), 1367–1369 (2004).
    [CrossRef]
  12. B. Juswardy, F. Xiao, and K. Alameh, “Opto-VLSI-based photonic true-time delay architecture for broadband adaptive nulling in phased array antennas,” Opt. Express17(6), 4773–4781 (2009).
    [CrossRef] [PubMed]
  13. Sylvain Combrié, Pierre Colman, Nguyen-Vy Quynh Tran, Jérome Bourderionnet, Alfredo DeRossi, Mark Patterson, Greg Demand, Stephen Hughes, Renaud Gabet, and Yves Jaouen, “Toward a miniature optical true-time delay line,” SPIE Newsroom, June 2010, DOI: 10.1117/2.1201005.002946
    [CrossRef]
  14. S. S. Maicas, F. Ohman, J. É. Capmany, and J. Mork, “Controlling microwave signals by means of slow and fast light effects in SOA-EA structures,” IEEE Photon. Technol. Lett.19(20), 1589–1591 (2007).
    [CrossRef]
  15. J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
    [CrossRef]
  16. S. R. Nuccio, O. F. Yilmaz, X. Wang, H. Huang, J. Wang, X. Wu, and A. E. Willner, “Higher-order dispersion compensation to enable a 3.6 micros wavelength-maintaining delay of a 100 Gb/s DQPSK signal,” Opt. Lett.35(17), 2985–2987 (2010).
    [CrossRef] [PubMed]
  17. O. F. Yilmaz, L. Yaron, S. Khaleghi, M. R. Chitgarha, M. Tur, and A. Willner, “True time delays using conversion/dispersion with flat magnitude response for wideband analog RF signals,” European Conference on Optical Communications, Geneva, Switzerland, paper Mo.1.A.6 (2011).
  18. C. Langrock, S. Kumar, J. E. McGeehan, A. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol.24(7), 2579–2592 (2006).
    [CrossRef]

2010

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
[CrossRef]

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

S. R. Nuccio, O. F. Yilmaz, X. Wang, H. Huang, J. Wang, X. Wu, and A. E. Willner, “Higher-order dispersion compensation to enable a 3.6 micros wavelength-maintaining delay of a 100 Gb/s DQPSK signal,” Opt. Lett.35(17), 2985–2987 (2010).
[CrossRef] [PubMed]

2009

2008

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett.20(5), 375–377 (2008).
[CrossRef]

2007

S. S. Maicas, F. Ohman, J. É. Capmany, and J. Mork, “Controlling microwave signals by means of slow and fast light effects in SOA-EA structures,” IEEE Photon. Technol. Lett.19(20), 1589–1591 (2007).
[CrossRef]

2006

S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, “Optical multibeamforming network based on WDM and dispersion fiber in receive mode,” IEEE Trans. Microw. Theory Tech.54(1), 402–411 (2006).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol.24(7), 2579–2592 (2006).
[CrossRef]

2005

2004

O. Raz, R. Rotman, Y. Danziger, and M. Tur, “Implementation of photonic true time delay using high-order-mode dispersion compensating fibers,” IEEE Photon. Technol. Lett.16(5), 1367–1369 (2004).
[CrossRef]

1997

J. L. Cruz, B. Ortega, M. V. Andrés, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett.33(7), 545–546 (1997).
[CrossRef]

1994

W. Ng, D. Yap, A. Narayanan, and A. Walston, “High-precision detector-switched monolithic GaAs time-delay network for the optical control of phased arrays,” IEEE Photon. Technol. Lett.6(2), 231–234 (1994).
[CrossRef]

1993

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett.5(11), 1347–1349 (1993).
[CrossRef]

Alameh, K.

Alouini, M.

S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, “Optical multibeamforming network based on WDM and dispersion fiber in receive mode,” IEEE Trans. Microw. Theory Tech.54(1), 402–411 (2006).
[CrossRef]

Andrés, M. V.

J. L. Cruz, B. Ortega, M. V. Andrés, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett.33(7), 545–546 (1997).
[CrossRef]

Blanc, S.

S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, “Optical multibeamforming network based on WDM and dispersion fiber in receive mode,” IEEE Trans. Microw. Theory Tech.54(1), 402–411 (2006).
[CrossRef]

Capmany, J.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

J. L. Cruz, B. Ortega, M. V. Andrés, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett.33(7), 545–546 (1997).
[CrossRef]

Capmany, J. É.

S. S. Maicas, F. Ohman, J. É. Capmany, and J. Mork, “Controlling microwave signals by means of slow and fast light effects in SOA-EA structures,” IEEE Photon. Technol. Lett.19(20), 1589–1591 (2007).
[CrossRef]

Chen, M. Y.

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett.20(5), 375–377 (2008).
[CrossRef]

Chen, R. T.

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett.20(5), 375–377 (2008).
[CrossRef]

Cooper, D. G.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett.5(11), 1347–1349 (1993).
[CrossRef]

Cruz, J. L.

J. L. Cruz, B. Ortega, M. V. Andrés, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett.33(7), 545–546 (1997).
[CrossRef]

Danziger, Y.

O. Raz, R. Rotman, Y. Danziger, and M. Tur, “Implementation of photonic true time delay using high-order-mode dispersion compensating fibers,” IEEE Photon. Technol. Lett.16(5), 1367–1369 (2004).
[CrossRef]

Dexter, J. L.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett.5(11), 1347–1349 (1993).
[CrossRef]

Dong, L.

J. L. Cruz, B. Ortega, M. V. Andrés, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett.33(7), 545–546 (1997).
[CrossRef]

Esman, R. D.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett.5(11), 1347–1349 (1993).
[CrossRef]

Fejer, M. M.

Frankel, M. Y.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett.5(11), 1347–1349 (1993).
[CrossRef]

Garenaux, K.

S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, “Optical multibeamforming network based on WDM and dispersion fiber in receive mode,” IEEE Trans. Microw. Theory Tech.54(1), 402–411 (2006).
[CrossRef]

Gasulla, S.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Gimeno, B.

J. L. Cruz, B. Ortega, M. V. Andrés, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett.33(7), 545–546 (1997).
[CrossRef]

Goldberg, L.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett.5(11), 1347–1349 (1993).
[CrossRef]

Huang, H.

Juswardy, B.

Kumar, S.

Langrock, C.

Lloret, I.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Loayssa, J.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Maicas, S. S.

S. S. Maicas, F. Ohman, J. É. Capmany, and J. Mork, “Controlling microwave signals by means of slow and fast light effects in SOA-EA structures,” IEEE Photon. Technol. Lett.19(20), 1589–1591 (2007).
[CrossRef]

McGeehan, J. E.

Merlet, T.

S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, “Optical multibeamforming network based on WDM and dispersion fiber in receive mode,” IEEE Trans. Microw. Theory Tech.54(1), 402–411 (2006).
[CrossRef]

Mork, J.

S. S. Maicas, F. Ohman, J. É. Capmany, and J. Mork, “Controlling microwave signals by means of slow and fast light effects in SOA-EA structures,” IEEE Photon. Technol. Lett.19(20), 1589–1591 (2007).
[CrossRef]

Narayanan, A.

W. Ng, D. Yap, A. Narayanan, and A. Walston, “High-precision detector-switched monolithic GaAs time-delay network for the optical control of phased arrays,” IEEE Photon. Technol. Lett.6(2), 231–234 (1994).
[CrossRef]

Ng, W.

W. Ng, D. Yap, A. Narayanan, and A. Walston, “High-precision detector-switched monolithic GaAs time-delay network for the optical control of phased arrays,” IEEE Photon. Technol. Lett.6(2), 231–234 (1994).
[CrossRef]

Nuccio, S. R.

Ohman, F.

S. S. Maicas, F. Ohman, J. É. Capmany, and J. Mork, “Controlling microwave signals by means of slow and fast light effects in SOA-EA structures,” IEEE Photon. Technol. Lett.19(20), 1589–1591 (2007).
[CrossRef]

Ortega, B.

J. L. Cruz, B. Ortega, M. V. Andrés, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett.33(7), 545–546 (1997).
[CrossRef]

Parent, M. G.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett.5(11), 1347–1349 (1993).
[CrossRef]

Pastor, D.

J. L. Cruz, B. Ortega, M. V. Andrés, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett.33(7), 545–546 (1997).
[CrossRef]

Queguiner, M.

S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, “Optical multibeamforming network based on WDM and dispersion fiber in receive mode,” IEEE Trans. Microw. Theory Tech.54(1), 402–411 (2006).
[CrossRef]

Raz, O.

R. Rotman, O. Raz, and M. Tur, “Analysis of a true time delay photonic beamformer for transmission of a linear frequency modulated waveform,” J. Lightwave Technol.23(12), 4026–4036 (2005).
[CrossRef]

O. Raz, R. Rotman, Y. Danziger, and M. Tur, “Implementation of photonic true time delay using high-order-mode dispersion compensating fibers,” IEEE Photon. Technol. Lett.16(5), 1367–1369 (2004).
[CrossRef]

Rotman, R.

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
[CrossRef]

R. Rotman, O. Raz, and M. Tur, “Analysis of a true time delay photonic beamformer for transmission of a linear frequency modulated waveform,” J. Lightwave Technol.23(12), 4026–4036 (2005).
[CrossRef]

O. Raz, R. Rotman, Y. Danziger, and M. Tur, “Implementation of photonic true time delay using high-order-mode dispersion compensating fibers,” IEEE Photon. Technol. Lett.16(5), 1367–1369 (2004).
[CrossRef]

Sagues, A.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Sales, L.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Sancho, J.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Sanghoon Chin, M.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Stilwell, D.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett.5(11), 1347–1349 (1993).
[CrossRef]

Subbaraman, H.

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett.20(5), 375–377 (2008).
[CrossRef]

Thévenaz,

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Tur, M.

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
[CrossRef]

R. Rotman, O. Raz, and M. Tur, “Analysis of a true time delay photonic beamformer for transmission of a linear frequency modulated waveform,” J. Lightwave Technol.23(12), 4026–4036 (2005).
[CrossRef]

O. Raz, R. Rotman, Y. Danziger, and M. Tur, “Implementation of photonic true time delay using high-order-mode dispersion compensating fibers,” IEEE Photon. Technol. Lett.16(5), 1367–1369 (2004).
[CrossRef]

Walston, A.

W. Ng, D. Yap, A. Narayanan, and A. Walston, “High-precision detector-switched monolithic GaAs time-delay network for the optical control of phased arrays,” IEEE Photon. Technol. Lett.6(2), 231–234 (1994).
[CrossRef]

Wang, J.

Wang, X.

Willner, A.

Willner, A. E.

Wu, X.

Xiao, F.

Yap, D.

W. Ng, D. Yap, A. Narayanan, and A. Walston, “High-precision detector-switched monolithic GaAs time-delay network for the optical control of phased arrays,” IEEE Photon. Technol. Lett.6(2), 231–234 (1994).
[CrossRef]

Yaron, L.

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
[CrossRef]

Yilmaz, O. F.

Zach, S.

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
[CrossRef]

Electron. Lett.

J. L. Cruz, B. Ortega, M. V. Andrés, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett.33(7), 545–546 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett.20(5), 375–377 (2008).
[CrossRef]

O. Raz, R. Rotman, Y. Danziger, and M. Tur, “Implementation of photonic true time delay using high-order-mode dispersion compensating fibers,” IEEE Photon. Technol. Lett.16(5), 1367–1369 (2004).
[CrossRef]

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
[CrossRef]

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett.5(11), 1347–1349 (1993).
[CrossRef]

W. Ng, D. Yap, A. Narayanan, and A. Walston, “High-precision detector-switched monolithic GaAs time-delay network for the optical control of phased arrays,” IEEE Photon. Technol. Lett.6(2), 231–234 (1994).
[CrossRef]

S. S. Maicas, F. Ohman, J. É. Capmany, and J. Mork, “Controlling microwave signals by means of slow and fast light effects in SOA-EA structures,” IEEE Photon. Technol. Lett.19(20), 1589–1591 (2007).
[CrossRef]

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

S. Blanc, M. Alouini, K. Garenaux, M. Queguiner, and T. Merlet, “Optical multibeamforming network based on WDM and dispersion fiber in receive mode,” IEEE Trans. Microw. Theory Tech.54(1), 402–411 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

O. F. Yilmaz, L. Yaron, S. Khaleghi, M. R. Chitgarha, M. Tur, and A. Willner, “True time delays using conversion/dispersion with flat magnitude response for wideband analog RF signals,” European Conference on Optical Communications, Geneva, Switzerland, paper Mo.1.A.6 (2011).

K. Willaims, “Microwave photonics,” Optical Fiber Communications Conference, Los Angeles, CA, SC160 (2011).

J. Capmany, J. Sancho, J. Lloret, I. Gasulla, and S. Sales, “Tunable phase-shift and true time delays using slow light techniques and devices,” European Conference on Optical Communications (ECOC), Torino, Italy, WS9 (2010).

M. Skolnik, Radar Handbook (McGraw-Hill, 1990).

Sylvain Combrié, Pierre Colman, Nguyen-Vy Quynh Tran, Jérome Bourderionnet, Alfredo DeRossi, Mark Patterson, Greg Demand, Stephen Hughes, Renaud Gabet, and Yves Jaouen, “Toward a miniature optical true-time delay line,” SPIE Newsroom, June 2010, DOI: 10.1117/2.1201005.002946
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Conceptual block diagram of the TTD system using conversion dispersion based delays; (b) effect of carrier optimized wavelength conversion to tone modulated signals; (c) offset pump wavelength conversion used to flatten the magnitude response.

Fig. 2
Fig. 2

Experimental setup. Spectra at output of the two PPLN waveguides are also shown for configuration B (10 dB/div, 2.5 nm/div). The dashed line is used for case-A only. BPF: bandpass filter, PC: polarization controller

Fig. 3
Fig. 3

Normalized magnitude responses for various cases (VNA calibrated to MZM and PD). The spectrum of the input signal and delayed signal output spectra are also shown.

Fig. 4
Fig. 4

(a) The actual phase and magnitude response (VNA calibrated to itself) of the TTD system measured with ~1.25 kHz steps vs. a fast scan; (b) actual phase response measurements of the PPLN W/C for carrier optimized and offset pump cases and their difference.

Fig. 5
Fig. 5

Relative delay for the non-flat and flattened delay systems. The inset shows the relative phase measurements for each wavelength (dashed line: Offset pump).

Fig. 6
Fig. 6

(a) Relative magnitude errors with respect to the minimum delay case magnitude response, (b) phase deviation from a linear fit for each wavelength.

Fig. 7
Fig. 7

The calculated matched filter output to the LFM pulse: (a) The actual PPLN W/C transfer functions for carrier optimized and offset pump cases. (b) The 12-hour measurements are used for the complete system for both cases.

Fig. 8
Fig. 8

(a) experimental magnitude response measurements when the probe pump, λD, used in PPLN-1 is used in PPLN-2 again. Each data curve is artificially shifted down by 1 dB for clarity purposes. (b) The calculated magnitude response using the model.

Fig. 9
Fig. 9

(a) The effect of increasing pump power on the experimental magnitude response of the system. The top curve shows the independent pump result that was given in Fig. 3. (b) The calculated output response for different modulation index of the probe pump.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P RF ( Ω RF )( [ m SIG m D ] 2 2 + m D 2 ( 1+cos( Ω RF T+ ϕ C ϕ D ) ) )

Metrics