Abstract

We present designs of organic solar cells (OSCs) incorporating periodically arranged gradient type active layer. The designs can enhance light harvesting with patterned organic materials themselves (i.e. self-enhanced active layer design) to avoid degrading electrical performances of OSCs in contrast to introducing inorganic concentrators into OSC active layers such as silicon and metallic nanostructures. Geometry of the OSC is fully optimized by rigorously solving Maxwell’s equations with fast and efficient scattering matrix method. Optical absorption is accessed by a volume integral of the active layer excluding the metallic absorption. Our numerical results show that the OSC with a self-enhanced active layer, compared with the conventional planar active layer configuration, has broadband and wide-angle range absorption enhancement due to better geometric impedance matching and prolonged optical path. This work provides a theoretical foundation and engineering reference for high performance OSC designs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
    [CrossRef]
  2. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [CrossRef]
  3. S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film for solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
    [CrossRef]
  4. W. Cao, J. D. Myers, Y. Zheng, W. T. Hammond, E. Wrzesniewski, and J. Xue, “Enhancing light harvesting in organic solar cells with pyramidal rear reflectors,” Appl. Phys. Lett. 99(2), 023306 (2011).
    [CrossRef]
  5. J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90(6), 063501 (2007).
    [CrossRef]
  6. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
    [CrossRef] [PubMed]
  7. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
    [CrossRef]
  8. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
    [CrossRef] [PubMed]
  9. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009).
    [CrossRef] [PubMed]
  10. D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
    [CrossRef]
  11. A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
    [CrossRef] [PubMed]
  12. J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
    [CrossRef] [PubMed]
  13. D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
    [CrossRef] [PubMed]
  14. A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express 17(11), 8871–8878 (2009).
    [CrossRef] [PubMed]
  15. R. Biswas and C. Xu, “Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit,” Opt. Express 19(S4Suppl 4), A664–A672 (2011).
    [CrossRef] [PubMed]
  16. W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
    [CrossRef]
  17. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 2008).
  18. X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Lett. 10(4), 1302–1307 (2010).
    [CrossRef] [PubMed]
  19. D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, and P. Heremans, “Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells,” Nanotechnology 19(42), 424016 (2008).
    [CrossRef] [PubMed]
  20. D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie, and S. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in PEDOT-PSS Layer,” J. Mater. Chem., doi:.
    [CrossRef]
  21. X. W. Chen, W. C. H. Choy, S. He, and P. C. Chui, “Comprehensive analysis and optimal design of top-emitting organic light-emitting devices,” J. Appl. Phys. 101, 113107 (2007).
    [CrossRef] [PubMed]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998).
  23. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  24. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multiplayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
    [CrossRef]
  25. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
    [CrossRef]
  26. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, Boston, 2005).
  27. G. Li, V. Shrotriys, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
    [CrossRef]
  28. C. D. Wang and W. C. H. Choy, “Efficient hole collection by introducing ultra-thin UV-ozone treated Au in polymer solar cells,” Sol. Energy Mater. Sol. Cells 95, 904–908 (2011).
    [CrossRef]
  29. S. Bavel, E. Sourty, G. With, K. Frolic, and J. Loos, “Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells,” Macromolecules 42(19), 7396–7403 (2009).
    [CrossRef]
  30. M. Born and E. Wolf, Principles of Optics (Pergamon Press, London, 1970).
  31. J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003).
  32. D. Poitras and J. A. Dobrowolski, “Toward perfect antireflection coatings. 2. Theory,” Appl. Opt. 43(6), 1286–1295 (2004).
    [CrossRef] [PubMed]

2011

W. Cao, J. D. Myers, Y. Zheng, W. T. Hammond, E. Wrzesniewski, and J. Xue, “Enhancing light harvesting in organic solar cells with pyramidal rear reflectors,” Appl. Phys. Lett. 99(2), 023306 (2011).
[CrossRef]

C. D. Wang and W. C. H. Choy, “Efficient hole collection by introducing ultra-thin UV-ozone treated Au in polymer solar cells,” Sol. Energy Mater. Sol. Cells 95, 904–908 (2011).
[CrossRef]

R. Biswas and C. Xu, “Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit,” Opt. Express 19(S4Suppl 4), A664–A672 (2011).
[CrossRef] [PubMed]

2010

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[CrossRef] [PubMed]

X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Lett. 10(4), 1302–1307 (2010).
[CrossRef] [PubMed]

2009

2008

D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, and P. Heremans, “Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells,” Nanotechnology 19(42), 424016 (2008).
[CrossRef] [PubMed]

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[CrossRef]

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

2007

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90(6), 063501 (2007).
[CrossRef]

X. W. Chen, W. C. H. Choy, S. He, and P. C. Chui, “Comprehensive analysis and optimal design of top-emitting organic light-emitting devices,” J. Appl. Phys. 101, 113107 (2007).
[CrossRef] [PubMed]

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film for solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

2005

G. Li, V. Shrotriys, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
[CrossRef] [PubMed]

2004

2002

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

1999

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multiplayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

1998

1982

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
[CrossRef]

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

Agrawal, M.

Bavel, S.

S. Bavel, E. Sourty, G. With, K. Frolic, and J. Loos, “Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells,” Macromolecules 42(19), 7396–7403 (2009).
[CrossRef]

Bermel, P.

Biswas, R.

R. Biswas and C. Xu, “Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit,” Opt. Express 19(S4Suppl 4), A664–A672 (2011).
[CrossRef] [PubMed]

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[CrossRef]

Cao, W.

W. Cao, J. D. Myers, Y. Zheng, W. T. Hammond, E. Wrzesniewski, and J. Xue, “Enhancing light harvesting in organic solar cells with pyramidal rear reflectors,” Appl. Phys. Lett. 99(2), 023306 (2011).
[CrossRef]

Carroll, D. L.

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90(6), 063501 (2007).
[CrossRef]

Chen, L.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Chen, X. W.

X. W. Chen, W. C. H. Choy, S. He, and P. C. Chui, “Comprehensive analysis and optimal design of top-emitting organic light-emitting devices,” J. Appl. Phys. 101, 113107 (2007).
[CrossRef] [PubMed]

Cheyns, D.

D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, and P. Heremans, “Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells,” Nanotechnology 19(42), 424016 (2008).
[CrossRef] [PubMed]

Choy, W. C. H.

C. D. Wang and W. C. H. Choy, “Efficient hole collection by introducing ultra-thin UV-ozone treated Au in polymer solar cells,” Sol. Energy Mater. Sol. Cells 95, 904–908 (2011).
[CrossRef]

X. W. Chen, W. C. H. Choy, S. He, and P. C. Chui, “Comprehensive analysis and optimal design of top-emitting organic light-emitting devices,” J. Appl. Phys. 101, 113107 (2007).
[CrossRef] [PubMed]

D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie, and S. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in PEDOT-PSS Layer,” J. Mater. Chem., doi:.
[CrossRef]

Chui, P. C.

X. W. Chen, W. C. H. Choy, S. He, and P. C. Chui, “Comprehensive analysis and optimal design of top-emitting organic light-emitting devices,” J. Appl. Phys. 101, 113107 (2007).
[CrossRef] [PubMed]

Chutinan, A.

Cody, G.

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multiplayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

DeSimone, J. M.

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Djurisic, A. B.

Dobrowolski, J. A.

Drouard, E.

Duché, D.

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

El Daif, O.

Elazar, J. M.

Emery, K.

G. Li, V. Shrotriys, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Escoubas, L.

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Fave, A.

Flory, F.

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Friend, R. H.

X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Lett. 10(4), 1302–1307 (2010).
[CrossRef] [PubMed]

Frolic, K.

S. Bavel, E. Sourty, G. With, K. Frolic, and J. Loos, “Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells,” Macromolecules 42(19), 7396–7403 (2009).
[CrossRef]

Fung, D. D. S.

D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie, and S. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in PEDOT-PSS Layer,” J. Mater. Chem., doi:.
[CrossRef]

Gao, F.

X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Lett. 10(4), 1302–1307 (2010).
[CrossRef] [PubMed]

Genoe, J.

D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, and P. Heremans, “Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells,” Nanotechnology 19(42), 424016 (2008).
[CrossRef] [PubMed]

Gippius, N. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Greenham, N. C.

X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Lett. 10(4), 1302–1307 (2010).
[CrossRef] [PubMed]

Hammond, W. T.

W. Cao, J. D. Myers, Y. Zheng, W. T. Hammond, E. Wrzesniewski, and J. Xue, “Enhancing light harvesting in organic solar cells with pyramidal rear reflectors,” Appl. Phys. Lett. 99(2), 023306 (2011).
[CrossRef]

Hasko, D.

X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Lett. 10(4), 1302–1307 (2010).
[CrossRef] [PubMed]

He, S.

X. W. Chen, W. C. H. Choy, S. He, and P. C. Chui, “Comprehensive analysis and optimal design of top-emitting organic light-emitting devices,” J. Appl. Phys. 101, 113107 (2007).
[CrossRef] [PubMed]

D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie, and S. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in PEDOT-PSS Layer,” J. Mater. Chem., doi:.
[CrossRef]

He, X.

X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Lett. 10(4), 1302–1307 (2010).
[CrossRef] [PubMed]

Heremans, P.

D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, and P. Heremans, “Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells,” Nanotechnology 19(42), 424016 (2008).
[CrossRef] [PubMed]

Huang, J.

G. Li, V. Shrotriys, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Huck, W. T. S.

X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Lett. 10(4), 1302–1307 (2010).
[CrossRef] [PubMed]

Hüttner, S.

X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Lett. 10(4), 1302–1307 (2010).
[CrossRef] [PubMed]

Ishihara, T.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Joannopoulos, J. D.

Kaminski, A.

Kherani, N. P.

Kimerling, L. C.

Ko, D. H.

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

Lemiti, M.

Letartre, X.

Li, G.

G. Li, V. Shrotriys, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Liu, J.

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90(6), 063501 (2007).
[CrossRef]

Loos, J.

S. Bavel, E. Sourty, G. With, K. Frolic, and J. Loos, “Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells,” Macromolecules 42(19), 7396–7403 (2009).
[CrossRef]

Lopez, R.

J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Luo, C.

Majewski, M. L.

Mallick, S. B.

McGehee, M. D.

S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film for solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

Míguez, H.

A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
[CrossRef] [PubMed]

Mihi, A.

A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
[CrossRef] [PubMed]

Moriarty, T.

G. Li, V. Shrotriys, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Muljarov, E. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Myers, J. D.

W. Cao, J. D. Myers, Y. Zheng, W. T. Hammond, E. Wrzesniewski, and J. Xue, “Enhancing light harvesting in organic solar cells with pyramidal rear reflectors,” Appl. Phys. Lett. 99(2), 023306 (2011).
[CrossRef]

Namboothiry, M. A. G.

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90(6), 063501 (2007).
[CrossRef]

Park, Y.

Peumans, P.

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[CrossRef] [PubMed]

S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film for solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

Poitras, D.

Poortmans, J.

D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, and P. Heremans, “Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells,” Nanotechnology 19(42), 424016 (2008).
[CrossRef] [PubMed]

Qiao, L.

D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie, and S. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in PEDOT-PSS Layer,” J. Mater. Chem., doi:.
[CrossRef]

Rakic, A. D.

Rim, S. B.

S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film for solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

Rolin, C.

D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, and P. Heremans, “Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells,” Nanotechnology 19(42), 424016 (2008).
[CrossRef] [PubMed]

Samulski, E. T.

J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Scully, S. R.

S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film for solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

Seassal, C.

Sha, W. E. I.

D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie, and S. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in PEDOT-PSS Layer,” J. Mater. Chem., doi:.
[CrossRef]

Shrotriys, V.

G. Li, V. Shrotriys, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Simon, J. J.

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Sourty, E.

S. Bavel, E. Sourty, G. With, K. Frolic, and J. Loos, “Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells,” Macromolecules 42(19), 7396–7403 (2009).
[CrossRef]

Steiner, U.

X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Lett. 10(4), 1302–1307 (2010).
[CrossRef] [PubMed]

Tao, M.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Tikhodeev, S. G.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Torchio, P.

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Tu, G.

X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Lett. 10(4), 1302–1307 (2010).
[CrossRef] [PubMed]

Tumbleston, J. R.

J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009).
[CrossRef] [PubMed]

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Vasseur, K.

D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, and P. Heremans, “Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells,” Nanotechnology 19(42), 424016 (2008).
[CrossRef] [PubMed]

Vervisch, W.

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Viktorovitch, P.

Wang, C.

D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie, and S. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in PEDOT-PSS Layer,” J. Mater. Chem., doi:.
[CrossRef]

Wang, C. D.

C. D. Wang and W. C. H. Choy, “Efficient hole collection by introducing ultra-thin UV-ozone treated Au in polymer solar cells,” Sol. Energy Mater. Sol. Cells 95, 904–908 (2011).
[CrossRef]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multiplayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Williams, S.

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

With, G.

S. Bavel, E. Sourty, G. With, K. Frolic, and J. Loos, “Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells,” Macromolecules 42(19), 7396–7403 (2009).
[CrossRef]

Wrzesniewski, E.

W. Cao, J. D. Myers, Y. Zheng, W. T. Hammond, E. Wrzesniewski, and J. Xue, “Enhancing light harvesting in organic solar cells with pyramidal rear reflectors,” Appl. Phys. Lett. 99(2), 023306 (2011).
[CrossRef]

Xie, F.

D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie, and S. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in PEDOT-PSS Layer,” J. Mater. Chem., doi:.
[CrossRef]

Xu, C.

Xue, J.

W. Cao, J. D. Myers, Y. Zheng, W. T. Hammond, E. Wrzesniewski, and J. Xue, “Enhancing light harvesting in organic solar cells with pyramidal rear reflectors,” Appl. Phys. Lett. 99(2), 023306 (2011).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
[CrossRef]

Yablonskii, A. L.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Yang, H.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Yang, Y.

G. Li, V. Shrotriys, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Yao, Y.

G. Li, V. Shrotriys, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Zeng, L.

Zhang, L.

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Zhao, S.

S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film for solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

Zheng, Y.

W. Cao, J. D. Myers, Y. Zheng, W. T. Hammond, E. Wrzesniewski, and J. Xue, “Enhancing light harvesting in organic solar cells with pyramidal rear reflectors,” Appl. Phys. Lett. 99(2), 023306 (2011).
[CrossRef]

Zhou, D.

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[CrossRef]

Zhou, W.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Zukotynski, S.

Appl. Opt.

Appl. Phys. Lett.

S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film for solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[CrossRef]

W. Cao, J. D. Myers, Y. Zheng, W. T. Hammond, E. Wrzesniewski, and J. Xue, “Enhancing light harvesting in organic solar cells with pyramidal rear reflectors,” Appl. Phys. Lett. 99(2), 023306 (2011).
[CrossRef]

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90(6), 063501 (2007).
[CrossRef]

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

IEEE Trans. Electron. Dev.

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

J. Appl. Phys.

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[CrossRef]

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

X. W. Chen, W. C. H. Choy, S. He, and P. C. Chui, “Comprehensive analysis and optimal design of top-emitting organic light-emitting devices,” J. Appl. Phys. 101, 113107 (2007).
[CrossRef] [PubMed]

J. Mater. Chem.

D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie, and S. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in PEDOT-PSS Layer,” J. Mater. Chem., doi:.
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Chem. B

A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
[CrossRef] [PubMed]

Macromolecules

S. Bavel, E. Sourty, G. With, K. Frolic, and J. Loos, “Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells,” Macromolecules 42(19), 7396–7403 (2009).
[CrossRef]

Nano Lett.

D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

X. He, F. Gao, G. Tu, D. Hasko, S. Hüttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck, “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Lett. 10(4), 1302–1307 (2010).
[CrossRef] [PubMed]

Nanotechnology

D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, and P. Heremans, “Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells,” Nanotechnology 19(42), 424016 (2008).
[CrossRef] [PubMed]

Nat. Mater.

G. Li, V. Shrotriys, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Opt. Express

Phys. Rev. B

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multiplayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Sol. Energy Mater. Sol. Cells

C. D. Wang and W. C. H. Choy, “Efficient hole collection by introducing ultra-thin UV-ozone treated Au in polymer solar cells,” Sol. Energy Mater. Sol. Cells 95, 904–908 (2011).
[CrossRef]

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, Boston, 2005).

M. Born and E. Wolf, Principles of Optics (Pergamon Press, London, 1970).

J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of (a) organic solar cell (OSC) with periodic arranged pyramids or square columns consist of P3HT:PCBM in the ZnO background. Top view of the lattice pattern is shown and high-symmetric Γ-M and Γ-X directions have been depicted. (b) OSC with periodic arranged cone type or cylinder type active layer.

Fig. 2
Fig. 2

(a) Average absorption as a function of filling factor ff = s2/a2 for pyramid type active layer with height h = 200nm, lattice const a = 200nm. s is the bottom side length of the pyramids. (b) Average absorption as a function of filling factor ff = πR2/a2 for cone type active layer with height h = 200nm, lattice const a = 200nm. R is the bottom radius of the cones. (c) Average reflectivity as a function of ITO thickness for pyramid type active layer. (d) Average reflectivity vs. ITO thickness for cone type active layer.

Fig. 3
Fig. 3

(a) Absorption power of the active layer. Red line denotes the result of close packed pyramid type active layer with bottom side length s = 200nm, lattice const a = 200nm, and height h = 200nm. Black line denotes the result of planar control cell with 3 times amount of P3HT:PCBM. Its height and lighted area is equal to pyramid type OSC. The inset shows the absorption coefficient of P3HT:PCBM. (b) Absorption power of the active layer per unit volume of P3HT:PCBM. All parameters are same with (a). (c) Result of larger scale pyramid type active layer (s = 400nm, a = 400nm, h = 400nm) and corresponding planar control cell. (d)Result of closed packed cone type active layer (bottom radius R = 100nm, a = 200nm, h = 200nm) and cylinder type active layer (radius R = 100nm, a = 200nm, h = 200nm).

Fig. 4
Fig. 4

(a) Reflectivity of close packed pyramid type active layer (red line) and planar active layer (black line). (b) Reflectivity of cone type active layer (red line) and cylinder type active layer (blue line).

Fig. 5
Fig. 5

Average absorption power of the active layer as a function of the incident angle θ: (red line) the closed packed pyramid type OSC with a = 200nm, s = 200nm and h = 200nm; (black line) corresponding planar bulk control solar cell using same volume of P3HT:PCBM and same active layer thickness.

Fig. 6
Fig. 6

Electric field profile (incident wavelength λ=500nm) of: (a) the pyramid type OSC, a=200nm, h=200nm, s=200nm (close packed); (b) the cone type OSC, a=200nm, h=200nm, R=100nm (close packed); (c) the cylinder type OSC, bottom radius R=95nm (loose packed); (d) the planar OSC. All figures are drawn with the same color scale.

Fig. 7
Fig. 7

(a) Exciton generation profile at z = 50nm for cone type active layer(R = 95nm). (b) Exciton generation profile at the same z position of cylinder type active layer(R = 95nm). (c)-(d) Vertical cross view of exciton generation profile of cone type and cylinder type active layer. All figures are drawn with the same color scale.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( a l b l ' ) = ( S 11 ( l ' , l ) S 12 ( l ' , l ) S 21 ( l ' , l ) S 22 ( l ' , l ) ) ( a l ' b l ) .
A = [ 1 L ] E i n c ( ω ) = V o n ( ω ) k ( ω ) ε o ω | E ( r , ω ) | 2 d V ,
a l = [ 1 S 12 ( l i n , l ) S 21 ( l , l o u t ) ] 1 × [ S 11 ( l i n , l ) a 0 ]
b l = [ 1 S 21 ( l , l o u t ) S 12 ( l i n , l ) ] 1 × [ S 21 ( l , l o u t ) S 11 ( l i n , l ) a 0 ] ,
A = 400 n m 800 n m A d I ( λ ) d λ d λ 400 n m 800 n m I ( λ ) d λ ,
n i = f f i n A + ( 1 f f i ) n B ,
G ( r , ω ) = S E 0 ( ω ) = Q E 0 ( ω ) ,

Metrics