Abstract

In Abbe’s formulation, source optimization (SO) is often formulated into a linear or quadratic problem, depending on the choice of objective functions. However, the conventional approach for the resist image, involving a sigmoid transformation of the aerial image, results in an objective with a functional form. The applicability of the resist-image objective to SO or simultaneous source and mask optimization (SMO) is therefore limited. In this paper, we present a linear combination of two quadratic line-contour objectives to approximate the resist image effect for fast convergence. The line-contour objectives are based on the aerial image on drawn edges using a constant threshold resist model and that of pixels associated with an intensity minimum for side-lobe suppression. A conjugate gradient method is employed to assure the convergence to the global minimum within the number of iterations less than that of source variables. We further compare the optimized illumination with the proposed line-contour objectives to that with a sigmoid resist-image using a steepest decent method. The results show a 100x speedup with comparable image fidelity and a slightly improved process window for the two cases studied.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithor. Microfabrication. Microsyst. 1(1), 13–30 (2002).
  2. Y. Granik, “Source optimization for image fidelity and throughput,”J. Microlithor. Microfabrication. Microsyst. 3, 509–522 (2004).
  3. A. E. Rosenbluth and N. Seong, “Global optimization of the illumination distribution to maximize integrated process window,” Proc. SPIE 6154, 61540H (2006).
    [CrossRef]
  4. K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72740C, (2009).
    [CrossRef]
  5. K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2x node logic,” Proc. SPIE 8166, 81662A (2011).
    [CrossRef]
  6. Y. Cao, Y. W. Lu, L. Chen, and J. Ye, “Optimized hardware and software for fast, full chip simulation,” Proc. SPIE 5754, 407–414 (2004).
    [CrossRef]
  7. S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
    [CrossRef]
  8. L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
    [CrossRef]
  9. I. Torunoglu, E. Elsen, and A. Karakas, “A GPU-based full-chip source-mask optimization solution,” Proc. SPIE 7640, 76401L (2010).
    [CrossRef]
  10. S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
    [CrossRef]
  11. C. Lim, V. Temchenko, and M. Niehoff, “Selective inverse lithography methodology,” Proc. SPIE 7640, 764034 (2010).
    [CrossRef]
  12. Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).
    [CrossRef]
  13. T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
    [CrossRef]
  14. Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
    [CrossRef]
  15. T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H. J. Stock, A. A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” Proc. SPIE 7823, 78233X (2010).
    [CrossRef]
  16. M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution,” Proc. SPIE 8166, 81663M (2011).
    [CrossRef]
  17. D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
    [CrossRef]
  18. K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
    [CrossRef]
  19. J. C. Yu and P. Yu, “Impacts of cost functions on inverse lithography patterning,” Opt. Express 18(22), 23331–23342 (2010).
    [CrossRef] [PubMed]
  20. A. Poonawala and P. Milanfar, “Prewrapping techniques in imaging: applications in nanotechnology and biotechnology,” Proc. SPIE 5674, 114–127 (2005).
    [CrossRef]
  21. A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).
  22. A. Poonawala and P. Milanfar, “Mask design for optical microlithography--an inverse imaging problem,” IEEE Trans. Image Process. 16(3), 774–788 (2007).
    [CrossRef] [PubMed]
  23. X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15(23), 15066–15079 (2007).
    [CrossRef] [PubMed]
  24. S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express 16(19), 14746–14760 (2008).
    [CrossRef] [PubMed]
  25. N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19(20), 19384–19398 (2011).
    [CrossRef] [PubMed]
  26. B. J. Lin, “Optical methods for fine line lithography,” in Fine Line Lithography, ed. R. Newman (New York: North Holland, 1980).
  27. J. C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” Proc. SPIE 7973, 787320 (2011).
  28. M. Born and E. Wolf, Principles of Optics, 7th(expanded) ed. (Cambridge University Press, 1999).
  29. A. K. Wong, Optical Imaging in Projection Microlithography (SPIE Press, 2005).
  30. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill Science/Engineering/Math, 2005).
  31. C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (John Wiley and Sons, 2008).
  32. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice Hall, 2007).
  33. D. S. Abrams and L. Pang, “Fast inverse lithography technology,” Proc. SPIE 6154, 534–542 (2006).
  34. J. C. Yu, P. Yu, and H. Y. Chao, “Wavefront-based pixel inversion algorithm for generation of subresolution assist features,” J. Micro./Nanolith. MEMS MOEMS. 10, 043014 (2011).
  35. S. I. Sayegh, Image restoration and image design in non-linear optical systems, PhD Thesis (Univ. of Wisconsin, Madison, 1982).
  36. L. N. Trefethen and D. Bau III, Numerical Linear Algebra (SIAM, 1997).
  37. E. K. P. Chong and S. H. Żak, An Introduction to Optimization, 3rd ed. (John Wiley and Sons, 2008).
  38. X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19(3), 2165–2180 (2011).
    [CrossRef] [PubMed]
  39. X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15(23), 15066–15079 (2007).
    [CrossRef] [PubMed]
  40. Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19(6), 5511–5521 (2011).
    [CrossRef] [PubMed]
  41. C. Alleaume, E. Yesilada, V. Farys, L. Depre, V. Arnoux, Z. Li, Y. Trouiller, and A. Serebriakov, “A systematic study of source error in source mask optimization,” Proc. SPIE 7823, 782312, 782312-7 (2010).
    [CrossRef]
  42. T. Matsuyama, N. Kita, T. Nakashima, O. Tanitsu, and S. Owa, “Tolerancing analysis of customized illumination for practical applications of source and mask optimization,” Proc. SPIE 7640, 764007, 764007-10 (2010).
    [CrossRef]
  43. L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express 13(7), 2444–2452 (2005).
    [CrossRef] [PubMed]
  44. I. Moon and B. Javidi, “Shape tolerant three-dimensional recognition of biological microorganisms using digital holography,” Opt. Express 13(23), 9612–9622 (2005).
    [CrossRef] [PubMed]
  45. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
    [CrossRef] [PubMed]
  46. S. Tamulevicius, A. Guobiene, G. Janusas, A. Palevicius, V. Ostasevicius, and M. Andrulevicius, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlithor. Microfabrication. Microsyst. 5, 013004 (2006).
  47. G. D. M. Jeffries, G. Milne, Y. Zhao, C. Lopez-Mariscal, and D. T. Chiu, “Optofluidic generation of Laguerre-Gaussian beams,” Opt. Express 17(20), 17555–17562 (2009).
    [CrossRef] [PubMed]

2011 (10)

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2x node logic,” Proc. SPIE 8166, 81662A (2011).
[CrossRef]

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).
[CrossRef]

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution,” Proc. SPIE 8166, 81663M (2011).
[CrossRef]

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19(20), 19384–19398 (2011).
[CrossRef] [PubMed]

J. C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” Proc. SPIE 7973, 787320 (2011).

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19(6), 5511–5521 (2011).
[CrossRef] [PubMed]

J. C. Yu, P. Yu, and H. Y. Chao, “Wavefront-based pixel inversion algorithm for generation of subresolution assist features,” J. Micro./Nanolith. MEMS MOEMS. 10, 043014 (2011).

X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19(3), 2165–2180 (2011).
[CrossRef] [PubMed]

2010 (9)

C. Alleaume, E. Yesilada, V. Farys, L. Depre, V. Arnoux, Z. Li, Y. Trouiller, and A. Serebriakov, “A systematic study of source error in source mask optimization,” Proc. SPIE 7823, 782312, 782312-7 (2010).
[CrossRef]

T. Matsuyama, N. Kita, T. Nakashima, O. Tanitsu, and S. Owa, “Tolerancing analysis of customized illumination for practical applications of source and mask optimization,” Proc. SPIE 7640, 764007, 764007-10 (2010).
[CrossRef]

J. C. Yu and P. Yu, “Impacts of cost functions on inverse lithography patterning,” Opt. Express 18(22), 23331–23342 (2010).
[CrossRef] [PubMed]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

I. Torunoglu, E. Elsen, and A. Karakas, “A GPU-based full-chip source-mask optimization solution,” Proc. SPIE 7640, 76401L (2010).
[CrossRef]

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

C. Lim, V. Temchenko, and M. Niehoff, “Selective inverse lithography methodology,” Proc. SPIE 7640, 764034 (2010).
[CrossRef]

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[CrossRef]

T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H. J. Stock, A. A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” Proc. SPIE 7823, 78233X (2010).
[CrossRef]

2009 (4)

L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
[CrossRef]

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72740C, (2009).
[CrossRef]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
[CrossRef] [PubMed]

G. D. M. Jeffries, G. Milne, Y. Zhao, C. Lopez-Mariscal, and D. T. Chiu, “Optofluidic generation of Laguerre-Gaussian beams,” Opt. Express 17(20), 17555–17562 (2009).
[CrossRef] [PubMed]

2008 (2)

S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express 16(19), 14746–14760 (2008).
[CrossRef] [PubMed]

S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
[CrossRef]

2007 (3)

2006 (4)

S. Tamulevicius, A. Guobiene, G. Janusas, A. Palevicius, V. Ostasevicius, and M. Andrulevicius, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlithor. Microfabrication. Microsyst. 5, 013004 (2006).

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).

D. S. Abrams and L. Pang, “Fast inverse lithography technology,” Proc. SPIE 6154, 534–542 (2006).

A. E. Rosenbluth and N. Seong, “Global optimization of the illumination distribution to maximize integrated process window,” Proc. SPIE 6154, 61540H (2006).
[CrossRef]

2005 (3)

2004 (2)

Y. Granik, “Source optimization for image fidelity and throughput,”J. Microlithor. Microfabrication. Microsyst. 3, 509–522 (2004).

Y. Cao, Y. W. Lu, L. Chen, and J. Ye, “Optimized hardware and software for fast, full chip simulation,” Proc. SPIE 5754, 407–414 (2004).
[CrossRef]

2002 (1)

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithor. Microfabrication. Microsyst. 1(1), 13–30 (2002).

Abrams, D. S.

D. S. Abrams and L. Pang, “Fast inverse lithography technology,” Proc. SPIE 6154, 534–542 (2006).

Adam, K.

M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution,” Proc. SPIE 8166, 81663M (2011).
[CrossRef]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Adrichem, P. V.

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2x node logic,” Proc. SPIE 8166, 81662A (2011).
[CrossRef]

Alleaume, C.

C. Alleaume, E. Yesilada, V. Farys, L. Depre, V. Arnoux, Z. Li, Y. Trouiller, and A. Serebriakov, “A systematic study of source error in source mask optimization,” Proc. SPIE 7823, 782312, 782312-7 (2010).
[CrossRef]

Andrulevicius, M.

S. Tamulevicius, A. Guobiene, G. Janusas, A. Palevicius, V. Ostasevicius, and M. Andrulevicius, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlithor. Microfabrication. Microsyst. 5, 013004 (2006).

Arce, G. R.

Arnoux, V.

C. Alleaume, E. Yesilada, V. Farys, L. Depre, V. Arnoux, Z. Li, Y. Trouiller, and A. Serebriakov, “A systematic study of source error in source mask optimization,” Proc. SPIE 7823, 782312, 782312-7 (2010).
[CrossRef]

Ashton, C.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

Asundi, A.

Austel, V.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

Baetz, U.

S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
[CrossRef]

Bagheri, S.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72740C, (2009).
[CrossRef]

Baik, K. H.

L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
[CrossRef]

Barahona, F.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Bauer, J.

S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
[CrossRef]

Berger, G.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Beyer, H.

S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
[CrossRef]

Bisschop, P. D.

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2x node logic,” Proc. SPIE 8166, 81662A (2011).
[CrossRef]

Brady, D. J.

Bukofsky, S.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithor. Microfabrication. Microsyst. 1(1), 13–30 (2002).

Burr, G.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Cao, Y.

Y. Cao, Y. W. Lu, L. Chen, and J. Ye, “Optimized hardware and software for fast, full chip simulation,” Proc. SPIE 5754, 407–414 (2004).
[CrossRef]

Capodieci, L.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[CrossRef]

Casati, N.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

Cecil, T.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
[CrossRef]

Chan, S. H.

Chao, H. Y.

J. C. Yu, P. Yu, and H. Y. Chao, “Wavefront-based pixel inversion algorithm for generation of subresolution assist features,” J. Micro./Nanolith. MEMS MOEMS. 10, 043014 (2011).

Chen, C.-C.

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72740C, (2009).
[CrossRef]

Chen, D.

L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
[CrossRef]

Chen, L.

Y. Cao, Y. W. Lu, L. Chen, and J. Ye, “Optimized hardware and software for fast, full chip simulation,” Proc. SPIE 5754, 407–414 (2004).
[CrossRef]

Chiu, D. T.

Choi, K.

Choi, S. W.

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

Cobb, N.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Corliss, D.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Dam, T.

L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
[CrossRef]

Dave, A.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Demaris, D.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

Deng, Y.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[CrossRef]

Depre, L.

C. Alleaume, E. Yesilada, V. Farys, L. Depre, V. Arnoux, Z. Li, Y. Trouiller, and A. Serebriakov, “A systematic study of source error in source mask optimization,” Proc. SPIE 7823, 782312, 782312-7 (2010).
[CrossRef]

Domnenko, V.

T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H. J. Stock, A. A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” Proc. SPIE 7823, 78233X (2010).
[CrossRef]

Elsen, E.

I. Torunoglu, E. Elsen, and A. Karakas, “A GPU-based full-chip source-mask optimization solution,” Proc. SPIE 7640, 76401L (2010).
[CrossRef]

Fakhry, M.

M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution,” Proc. SPIE 8166, 81663M (2011).
[CrossRef]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Farys, V.

C. Alleaume, E. Yesilada, V. Farys, L. Depre, V. Arnoux, Z. Li, Y. Trouiller, and A. Serebriakov, “A systematic study of source error in source mask optimization,” Proc. SPIE 7823, 782312, 782312-7 (2010).
[CrossRef]

Faure, T.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Fonseca, C.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithor. Microfabrication. Microsyst. 1(1), 13–30 (2002).

Gabrani, M.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

Gallagher, E.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Geisler, S.

S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
[CrossRef]

Gil, D.

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72740C, (2009).
[CrossRef]

Gleason, B.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
[CrossRef]

Gleason, R.

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

Granik, Y.

M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution,” Proc. SPIE 8166, 81663M (2011).
[CrossRef]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Y. Granik, “Source optimization for image fidelity and throughput,”J. Microlithor. Microfabrication. Microsyst. 3, 509–522 (2004).

Gronlund, K.

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2x node logic,” Proc. SPIE 8166, 81662A (2011).
[CrossRef]

Guo, Z.

Guobiene, A.

S. Tamulevicius, A. Guobiene, G. Janusas, A. Palevicius, V. Ostasevicius, and M. Andrulevicius, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlithor. Microfabrication. Microsyst. 5, 013004 (2006).

Haak, U.

S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
[CrossRef]

Halle, S.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

He, L.

L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
[CrossRef]

Hibbs, M.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithor. Microfabrication. Microsyst. 1(1), 13–30 (2002).

Hong, M. J.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

Horisaki, R.

Hsu, S.

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2x node logic,” Proc. SPIE 8166, 81662A (2011).
[CrossRef]

Hu, P.

L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
[CrossRef]

Inoue, T.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Irby, D.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

Iwase, K.

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2x node logic,” Proc. SPIE 8166, 81662A (2011).
[CrossRef]

Jagdhold, U.

S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
[CrossRef]

Jang, S.

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).
[CrossRef]

Janusas, G.

S. Tamulevicius, A. Guobiene, G. Janusas, A. Palevicius, V. Ostasevicius, and M. Andrulevicius, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlithor. Microfabrication. Microsyst. 5, 013004 (2006).

Javidi, B.

Jeffries, G. D. M.

Jeong, M.

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

Jia, N.

Jung, S.

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

Jung, S. G.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

Karakas, A.

I. Torunoglu, E. Elsen, and A. Karakas, “A GPU-based full-chip source-mask optimization solution,” Proc. SPIE 7640, 76401L (2010).
[CrossRef]

Kim, D.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

Kim, Y.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Kita, N.

T. Matsuyama, N. Kita, T. Nakashima, O. Tanitsu, and S. Owa, “Tolerancing analysis of customized illumination for practical applications of source and mask optimization,” Proc. SPIE 7640, 764007, 764007-10 (2010).
[CrossRef]

Klimpel, T.

T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H. J. Stock, A. A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” Proc. SPIE 7823, 78233X (2010).
[CrossRef]

Krasnoperova, A.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72740C, (2009).
[CrossRef]

Küchler, B.

T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H. J. Stock, A. A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” Proc. SPIE 7823, 78233X (2010).
[CrossRef]

Kwa, D.

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).
[CrossRef]

Kye, J.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[CrossRef]

Ladanyi, L.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Laenens, B.

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2x node logic,” Proc. SPIE 8166, 81662A (2011).
[CrossRef]

Lai, K.

M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution,” Proc. SPIE 8166, 81663M (2011).
[CrossRef]

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72740C, (2009).
[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithor. Microfabrication. Microsyst. 1(1), 13–30 (2002).

Lam, E. Y.

Lam, M.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Lee, H. J.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

Lee, J.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Lee, S.

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

Lee, S. W.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

Levinson, H. J.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[CrossRef]

Li, X.

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).
[CrossRef]

Li, Z.

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2x node logic,” Proc. SPIE 8166, 81662A (2011).
[CrossRef]

C. Alleaume, E. Yesilada, V. Farys, L. Depre, V. Arnoux, Z. Li, Y. Trouiller, and A. Serebriakov, “A systematic study of source error in source mask optimization,” Proc. SPIE 7823, 782312, 782312-7 (2010).
[CrossRef]

Lim, C.

C. Lim, V. Temchenko, and M. Niehoff, “Selective inverse lithography methodology,” Proc. SPIE 7640, 764034 (2010).
[CrossRef]

Lim, S.

Lopez-Mariscal, C.

Lu, Y. W.

Y. Cao, Y. W. Lu, L. Chen, and J. Ye, “Optimized hardware and software for fast, full chip simulation,” Proc. SPIE 5754, 407–414 (2004).
[CrossRef]

Luan, L.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

Lugg, R.

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).
[CrossRef]

Ma, X.

Ma, Y.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[CrossRef]

Marks, D. L.

Matsuyama, T.

T. Matsuyama, N. Kita, T. Nakashima, O. Tanitsu, and S. Owa, “Tolerancing analysis of customized illumination for practical applications of source and mask optimization,” Proc. SPIE 7640, 764007, 764007-10 (2010).
[CrossRef]

Matthus, E.

S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
[CrossRef]

McIntyre, G.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Meiring, J.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Melville, D.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72740C, (2009).
[CrossRef]

Melville, D. O.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

Miao, J.

Milanfar, P.

A. Poonawala and P. Milanfar, “Mask design for optical microlithography--an inverse imaging problem,” IEEE Trans. Image Process. 16(3), 774–788 (2007).
[CrossRef] [PubMed]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).

A. Poonawala and P. Milanfar, “Prewrapping techniques in imaging: applications in nanotechnology and biotechnology,” Proc. SPIE 5674, 114–127 (2005).
[CrossRef]

Milne, G.

Molless, A.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithor. Microfabrication. Microsyst. 1(1), 13–30 (2002).

Moon, I.

Morgenfeld, B.

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72740C, (2009).
[CrossRef]

Mülders, T.

T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H. J. Stock, A. A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” Proc. SPIE 7823, 78233X (2010).
[CrossRef]

Muta, H.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Nakashima, T.

T. Matsuyama, N. Kita, T. Nakashima, O. Tanitsu, and S. Owa, “Tolerancing analysis of customized illumination for practical applications of source and mask optimization,” Proc. SPIE 7640, 764007, 764007-10 (2010).
[CrossRef]

Niehoff, M.

C. Lim, V. Temchenko, and M. Niehoff, “Selective inverse lithography methodology,” Proc. SPIE 7640, 764034 (2010).
[CrossRef]

S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
[CrossRef]

Ostasevicius, V.

S. Tamulevicius, A. Guobiene, G. Janusas, A. Palevicius, V. Ostasevicius, and M. Andrulevicius, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlithor. Microfabrication. Microsyst. 5, 013004 (2006).

Owa, S.

T. Matsuyama, N. Kita, T. Nakashima, O. Tanitsu, and S. Owa, “Tolerancing analysis of customized illumination for practical applications of source and mask optimization,” Proc. SPIE 7640, 764007, 764007-10 (2010).
[CrossRef]

Palevicius, A.

S. Tamulevicius, A. Guobiene, G. Janusas, A. Palevicius, V. Ostasevicius, and M. Andrulevicius, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlithor. Microfabrication. Microsyst. 5, 013004 (2006).

Pang, L.

L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
[CrossRef]

D. S. Abrams and L. Pang, “Fast inverse lithography technology,” Proc. SPIE 6154, 534–542 (2006).

Peng, D.

L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
[CrossRef]

Peng, X.

Ping, Y.

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).
[CrossRef]

Pliquett, R.

S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
[CrossRef]

Poonawala, A.

A. Poonawala and P. Milanfar, “Mask design for optical microlithography--an inverse imaging problem,” IEEE Trans. Image Process. 16(3), 774–788 (2007).
[CrossRef] [PubMed]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).

A. Poonawala and P. Milanfar, “Prewrapping techniques in imaging: applications in nanotechnology and biotechnology,” Proc. SPIE 5674, 114–127 (2005).
[CrossRef]

Poonawala, A. A.

T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H. J. Stock, A. A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” Proc. SPIE 7823, 78233X (2010).
[CrossRef]

Rosenbluth, A.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Rosenbluth, A. E.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72740C, (2009).
[CrossRef]

A. E. Rosenbluth and N. Seong, “Global optimization of the illumination distribution to maximize integrated process window,” Proc. SPIE 6154, 61540H (2006).
[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithor. Microfabrication. Microsyst. 1(1), 13–30 (2002).

Sakamoto, M.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Sarkar, S.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

Scarpazza, D.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Schrader, R.

S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
[CrossRef]

Seong, N.

A. E. Rosenbluth and N. Seong, “Global optimization of the illumination distribution to maximize integrated process window,” Proc. SPIE 6154, 61540H (2006).
[CrossRef]

Ser, J.

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

Serebriakov, A.

C. Alleaume, E. Yesilada, V. Farys, L. Depre, V. Arnoux, Z. Li, Y. Trouiller, and A. Serebriakov, “A systematic study of source error in source mask optimization,” Proc. SPIE 7823, 782312, 782312-7 (2010).
[CrossRef]

Shen, Y.

Sim, W.

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

Sim, W. J.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

Singh, R. N.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithor. Microfabrication. Microsyst. 1(1), 13–30 (2002).

Son, D.

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

Son, D. H.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

Stanton, W. A.

T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H. J. Stock, A. A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” Proc. SPIE 7823, 78233X (2010).
[CrossRef]

Stock, H. J.

T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H. J. Stock, A. A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” Proc. SPIE 7823, 78233X (2010).
[CrossRef]

Strenski, P.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Suh, S. S.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

Szeto-Millstone, M.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

Tabery, C. E.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[CrossRef]

Tamulevicius, S.

S. Tamulevicius, A. Guobiene, G. Janusas, A. Palevicius, V. Ostasevicius, and M. Andrulevicius, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlithor. Microfabrication. Microsyst. 5, 013004 (2006).

Tanitsu, O.

T. Matsuyama, N. Kita, T. Nakashima, O. Tanitsu, and S. Owa, “Tolerancing analysis of customized illumination for practical applications of source and mask optimization,” Proc. SPIE 7640, 764007, 764007-10 (2010).
[CrossRef]

Taravade, K. N.

T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H. J. Stock, A. A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” Proc. SPIE 7823, 78233X (2010).
[CrossRef]

Temchenko, V.

C. Lim, V. Temchenko, and M. Niehoff, “Selective inverse lithography methodology,” Proc. SPIE 7640, 764034 (2010).
[CrossRef]

Tian, K.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72740C, (2009).
[CrossRef]

Tirapu-Azpiroz, J.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72740C, (2009).
[CrossRef]

Tolani, V.

L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
[CrossRef]

Torres, A.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

Torunoglu, I.

I. Torunoglu, E. Elsen, and A. Karakas, “A GPU-based full-chip source-mask optimization solution,” Proc. SPIE 7640, 76401L (2010).
[CrossRef]

Tritchkov, A.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Trouiller, Y.

C. Alleaume, E. Yesilada, V. Farys, L. Depre, V. Arnoux, Z. Li, Y. Trouiller, and A. Serebriakov, “A systematic study of source error in source mask optimization,” Proc. SPIE 7823, 782312, 782312-7 (2010).
[CrossRef]

Wächter, A.

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

Waechter, A.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Wagner, A.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Wolf, H.

S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
[CrossRef]

Wong, A. K.

Wong, A. K. K.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithor. Microfabrication. Microsyst. 1(1), 13–30 (2002).

Wong, N.

Xiao, G.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
[CrossRef]

Xu, L.

Ye, J.

Y. Cao, Y. W. Lu, L. Chen, and J. Ye, “Optimized hardware and software for fast, full chip simulation,” Proc. SPIE 5754, 407–414 (2004).
[CrossRef]

Yesilada, E.

C. Alleaume, E. Yesilada, V. Farys, L. Depre, V. Arnoux, Z. Li, Y. Trouiller, and A. Serebriakov, “A systematic study of source error in source mask optimization,” Proc. SPIE 7823, 782312, 782312-7 (2010).
[CrossRef]

Yoshimoto, K.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[CrossRef]

Yu, J. C.

J. C. Yu, P. Yu, and H. Y. Chao, “Wavefront-based pixel inversion algorithm for generation of subresolution assist features,” J. Micro./Nanolith. MEMS MOEMS. 10, 043014 (2011).

J. C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” Proc. SPIE 7973, 787320 (2011).

J. C. Yu and P. Yu, “Impacts of cost functions on inverse lithography patterning,” Opt. Express 18(22), 23331–23342 (2010).
[CrossRef] [PubMed]

Yu, P.

J. C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” Proc. SPIE 7973, 787320 (2011).

J. C. Yu, P. Yu, and H. Y. Chao, “Wavefront-based pixel inversion algorithm for generation of subresolution assist features,” J. Micro./Nanolith. MEMS MOEMS. 10, 043014 (2011).

J. C. Yu and P. Yu, “Impacts of cost functions on inverse lithography patterning,” Opt. Express 18(22), 23331–23342 (2010).
[CrossRef] [PubMed]

Zhang, Y.

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).
[CrossRef]

Zhao, Y.

Zhou, X.

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

Zhuang, L.

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

Zou, Y.

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[CrossRef]

IEEE Trans. Image Process. (1)

A. Poonawala and P. Milanfar, “Mask design for optical microlithography--an inverse imaging problem,” IEEE Trans. Image Process. 16(3), 774–788 (2007).
[CrossRef] [PubMed]

J. Micro./Nanolith. MEMS MOEMS. (1)

J. C. Yu, P. Yu, and H. Y. Chao, “Wavefront-based pixel inversion algorithm for generation of subresolution assist features,” J. Micro./Nanolith. MEMS MOEMS. 10, 043014 (2011).

J. Microlithor. Microfabrication. Microsyst. (3)

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithor. Microfabrication. Microsyst. 1(1), 13–30 (2002).

Y. Granik, “Source optimization for image fidelity and throughput,”J. Microlithor. Microfabrication. Microsyst. 3, 509–522 (2004).

S. Tamulevicius, A. Guobiene, G. Janusas, A. Palevicius, V. Ostasevicius, and M. Andrulevicius, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlithor. Microfabrication. Microsyst. 5, 013004 (2006).

Opt. Express (11)

G. D. M. Jeffries, G. Milne, Y. Zhao, C. Lopez-Mariscal, and D. T. Chiu, “Optofluidic generation of Laguerre-Gaussian beams,” Opt. Express 17(20), 17555–17562 (2009).
[CrossRef] [PubMed]

J. C. Yu and P. Yu, “Impacts of cost functions on inverse lithography patterning,” Opt. Express 18(22), 23331–23342 (2010).
[CrossRef] [PubMed]

L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express 13(7), 2444–2452 (2005).
[CrossRef] [PubMed]

I. Moon and B. Javidi, “Shape tolerant three-dimensional recognition of biological microorganisms using digital holography,” Opt. Express 13(23), 9612–9622 (2005).
[CrossRef] [PubMed]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
[CrossRef] [PubMed]

X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19(3), 2165–2180 (2011).
[CrossRef] [PubMed]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15(23), 15066–15079 (2007).
[CrossRef] [PubMed]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19(6), 5511–5521 (2011).
[CrossRef] [PubMed]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15(23), 15066–15079 (2007).
[CrossRef] [PubMed]

S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express 16(19), 14746–14760 (2008).
[CrossRef] [PubMed]

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19(20), 19384–19398 (2011).
[CrossRef] [PubMed]

Proc. SPIE (22)

J. C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” Proc. SPIE 7973, 787320 (2011).

C. Alleaume, E. Yesilada, V. Farys, L. Depre, V. Arnoux, Z. Li, Y. Trouiller, and A. Serebriakov, “A systematic study of source error in source mask optimization,” Proc. SPIE 7823, 782312, 782312-7 (2010).
[CrossRef]

T. Matsuyama, N. Kita, T. Nakashima, O. Tanitsu, and S. Owa, “Tolerancing analysis of customized illumination for practical applications of source and mask optimization,” Proc. SPIE 7640, 764007, 764007-10 (2010).
[CrossRef]

A. E. Rosenbluth and N. Seong, “Global optimization of the illumination distribution to maximize integrated process window,” Proc. SPIE 6154, 61540H (2006).
[CrossRef]

K. Tian, A. Krasnoperova, D. Melville, A. E. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C.-C. Chen, and B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography,” Proc. SPIE 7274, 72740C, (2009).
[CrossRef]

K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2x node logic,” Proc. SPIE 8166, 81662A (2011).
[CrossRef]

Y. Cao, Y. W. Lu, L. Chen, and J. Ye, “Optimized hardware and software for fast, full chip simulation,” Proc. SPIE 5754, 407–414 (2004).
[CrossRef]

S. Geisler, J. Bauer, U. Haak, U. Jagdhold, R. Pliquett, E. Matthus, R. Schrader, H. Wolf, U. Baetz, H. Beyer, and M. Niehoff, “Optical proximity correction for 0.13 μm SiGe:C BiCMOS,” Proc. SPIE 6792, 679210(2008).
[CrossRef]

L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam, K. H. Baik, and B. Gleason, “Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods,” Proc. SPIE 7520, 75200X (2009).
[CrossRef]

I. Torunoglu, E. Elsen, and A. Karakas, “A GPU-based full-chip source-mask optimization solution,” Proc. SPIE 7640, 76401L (2010).
[CrossRef]

S. Jung, W. Sim, M. Jeong, J. Ser, S. Lee, S. W. Choi, X. Zhou, L. Luan, T. Cecil, D. Son, R. Gleason, and D. Kim, “Improving model prediction accuracy for ILT with aggressive SRAFs,” Proc. SPIE 7823, 782311(2010).
[CrossRef]

C. Lim, V. Temchenko, and M. Niehoff, “Selective inverse lithography methodology,” Proc. SPIE 7640, 764034 (2010).
[CrossRef]

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).
[CrossRef]

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, B. Gleason, H. J. Lee, W. J. Sim, M. J. Hong, S. G. Jung, S. S. Suh, and S. W. Lee, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).
[CrossRef]

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” Proc. SPIE 7640, 76401J (2010).
[CrossRef]

T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H. J. Stock, A. A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” Proc. SPIE 7823, 78233X (2010).
[CrossRef]

M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution,” Proc. SPIE 8166, 81663M (2011).
[CrossRef]

D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” Proc. SPIE 7640, 764006 (2010).
[CrossRef]

K. Lai, M. Gabrani, D. Demaris, N. Casati, A. Torres, S. Sarkar, P. Strenski, S. Bagheri, D. Scarpazza, A. E. Rosenbluth, D. O. Melville, A. Wächter, J. Lee, V. Austel, M. Szeto-Millstone, K. Tian, F. Barahona, T. Inoue, and M. Sakamoto, “Design specific joint optimization of masks and sources on a very large scale,” Proc. SPIE 7973, 797308 (2011).
[CrossRef]

A. Poonawala and P. Milanfar, “Prewrapping techniques in imaging: applications in nanotechnology and biotechnology,” Proc. SPIE 5674, 114–127 (2005).
[CrossRef]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).

D. S. Abrams and L. Pang, “Fast inverse lithography technology,” Proc. SPIE 6154, 534–542 (2006).

Other (9)

S. I. Sayegh, Image restoration and image design in non-linear optical systems, PhD Thesis (Univ. of Wisconsin, Madison, 1982).

L. N. Trefethen and D. Bau III, Numerical Linear Algebra (SIAM, 1997).

E. K. P. Chong and S. H. Żak, An Introduction to Optimization, 3rd ed. (John Wiley and Sons, 2008).

M. Born and E. Wolf, Principles of Optics, 7th(expanded) ed. (Cambridge University Press, 1999).

A. K. Wong, Optical Imaging in Projection Microlithography (SPIE Press, 2005).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill Science/Engineering/Math, 2005).

C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (John Wiley and Sons, 2008).

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice Hall, 2007).

B. J. Lin, “Optical methods for fine line lithography,” in Fine Line Lithography, ed. R. Newman (New York: North Holland, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of the matrix operations in Eq. (7). ℜ denotes the matrix to vector conversion. ℜ−1 denotes the vector to matrix conversion.

Fig. 2
Fig. 2

Partitioned ICC for different parts of image formation. (a) Example of a pixelated square contact mask. (b) Row extractions and sub-ICC generation. (c) Matrix operations of various image formations by using sub-ICCs.

Fig. 3
Fig. 3

(a) Regular contact array and (b) Brick contact array used for source optimization.

Fig. 4
Fig. 4

Optimal sources of the regular contact array in Fig. 3(a).

Fig. 5
Fig. 5

Optimal sources of the brick contact array in Fig. 3(b).

Fig. 6
Fig. 6

Average E-D PW of (a) Regular contact array, and (b) Brick contact array.

Tables (5)

Tables Icon

Table 1 Pseudo-Code of CG

Tables Icon

Table 2 Pseudo-Code of SD

Tables Icon

Table 3 Measurements of Sources and Aerial Images

Tables Icon

Table 4 Evaluation of Computational Complexity and Speed Enhancement

Tables Icon

Table 5 Measurements of E-D PWs

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = J ( u , v ) [ | H ( u + u ' , v + v ' ) M ( u ' , v ' ) e i 2 π [ u ' x + v ' y ] d u ' d v ' | 2 ] d u d v ,
{ H ( u , v ) = 1 , u 2 + v 2 N A λ , H ( u , v ) = 0 , o t h e r w i s e ,
{ J ( u , v ) 0 , u 2 + v 2 σ N A λ , J ( u , v ) = 0 , o t h e r w i s e .
I C C ( x , y ; u , v ) = | H ( u + u ' , v + v ' ) M ( u ' , v ' ) e i 2 π [ u ' x + v ' y ] d u ' d v ' | 2 .
I ( i , j ) = k = 1 S l = 1 S J ( k , l ) ICC ( i , j ; k , l ) , i , j = 1 , 2 , ... , N .
ICC ( i , j ; k , l ) = | k ' = 1 S l ' = 1 S H ( k + k ' , l + l ' ) M ( k ' , l ' ) e i 2 π [ u ' ( k , l ) x ( i , j ) + v ' ( k , l ) y ( i , j ) ] | 2 .
I = I C C J ,
T ( I ) = 1 1 + e a ( I t r ) = 1 1 + e a ( I C C J t r ) ,
F S i g m o i d = T ( I t ) T ( I ) 2 ,
F R = 1 2 ( I C C i n + I C C o u t ) J - t r 2 ,
F 0 = I C C 0 J - δ 2 ,
F R = ( 1 2 ( I C C i n + I C C o u t ) J - t r ) T ( 1 2 ( I C C i n + I C C o u t ) J - t r ) ,
F 0 = ( I C C 0 J - δ ) T ( I C C 0 J - δ ) ,
F L i n e a r = c 1 F R + c 2 F 0 .
J ^ = a r g m i n J . { F L i n e a r } .
F L i n e a r = J T Q J b T J + c ,
Q = c 1 4 ( I C C i n + I C C o u t ) T ( I C C i n + I C C o u t ) + c 2 I C C 0 T I C C 0 ,
b = c 1 ( I C C i n + I C C o u t ) T t r + 2 c 2 I C C 0 T δ ,
c = c 1 t r T t r + c 2 δ T δ .
J ^ = a r g m i n J . { F S i g m o i d } .
DoPE J = 1 2 | J 2 J 2 J 1 J 1 | , J 1 , J 2 0.
DoPE I = 1 2 | I 2 I 2 I 1 I 1 | , I 1 , I 2 0 .

Metrics